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Abstract : This article covers the fundamentals of stress-induced diffusion, focusing on the theoretical model for
hydrogen transport through self-stressed electrode. First, the relationship between hydrogen diffusion and macroscopic
deformation of the electrode specimen was briefly introduced, and then it was classified into the diffusion-elastic
and elasto-diffusive phenomena. Next, the transport equation for the flux of hydrogen caused simultaneously by
both the concentration gradient and the stress gradient was theoretically derived. Finally, stress-induced diffusion was
discussed on the basis of the numerical solutions to the derived transport equation under the permeable and impermeable
boundary conditions.

Key words : Hydrogen transport, Elasto-diffusive phenomena, Stress gradient, Model for stress-induced diffusion, Numer-
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1. Introduction

Hydride-forming metals and alloys such as Pd,1,2) LaNi5,3)

Mm-based4) and Zr-based alloys5) have extensively been
investigated because of their technological applications to
electrode materials for Ni/MH secondary batteries and elec-
trochemical devices. During hydrogen injection into the
hydride electrode, hydrogen dissolves in metal and hence
expands the crystal lattice of the host metal. The strain or
stress field originating from this crystal lattice distortion gives
rise to a series of physical property change.6-8)

Recently, from the results of the hydrogen permeation through
tubular membrane of Pd and Pd alloys,9-11) it was reported
that the Fick’s diffusion equation is inadequate for the expla-
nation for all features of hydrogen transport in metals, since
the self-stress originating from the gradient of the hydrogen
concentration affects the transport of hydrogen. In other words,
elastic field is capable of creating an additional component
of the driving force for hydrogen transport and can alter the
boundary conditions at the electrode surfaces which have
been considered in analyses of transport problems using only
the Fick’s diffusion equation.

The purpose of this article is to overview the fundamental
aspects of stress-induced diffusion. For this purpose, the rela-
tionship between hydrogen diffusion and macroscopic defor-
mation of the electrode was firstly classified. Next, the elasto-
diffusive phenomenon was theoretically analysed by employing
the model for stress-induced diffusion. Finally, hydrogen

transport with stress field was discussed on the grounds of
the numerical solutions to the derived transport equation
under the permeable and impermeable boundary conditions.

2. Relationship between Hydrogen Diffusion 
and Macroscopic Deformation

The relationship between hydrogen diffusion and macroscopic
deformation of the electrode specimen can be classified into
the diffusion-elastic and elasto-diffusive phenomena.12)

2.1. Diffusion-elastic phenomenon
The primary cause of the stress generated during hydrogen

transport through the electrode specimen is the hydrogen dif-
fusion-flux resulting from the asymmetry of the hydrogen
distribution across the electrode specimen. The inhomogeneous
hydrogen distribution causes an inhomogeneous dilation of
the crystal lattice of the electrode specimen and hence gives
rise to a bending of the electrode specimen. Consequently,
the bending of the electrode specimen is produced by the
hydrogen flux within the electrode specimen. This phenome-
non has been classified as the diffusion-elastic phenomenon,
which was discussed in detail by Han and Pyun.12)

Fig. 1(a) envisages the tensile deflection against time mea-
sured from the Pd foil electrode using a laser beam deflec-
tion method (LBDM).2) During hydrogen extraction, all tensile
deflections rose up to the maximum value, and then were
completely relaxed, irrespective of the hydrogen pre-charging
potential. As the hydrogen pre-charging potential was
decreased, i.e. the larger the amount of hydrogen injected into
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the Pd electrode was, the values of the maximum tensile
deflection and the time to the maximum tensile deflection
were increased.

The cause of this deflection has been identified with the
difference between the molar volume of Pd at the electrolyte/
electrode interface and that at the electrode/impermeable
boundary interface, which is caused by the hydrogen extrac-
tion, as illustrated in Fig. 1(b). In this respect, it is reasonable
to consider that the local volume change across the electrode
is increased to the maximum value as hydrogen atoms are
extracted from the pre-charged Pd electrode. After that it
begins to decrease as the concentration of hydrogen at the
impermeable boundary decreases and hence the deflection of
the specimen is relaxed. It has also been known that the rel-
ative magnitudes of this phenomenon are related to the initial
hydrogen concentration corresponding to the hydrogen pre-
charging potential.2,13,14)

2.2. Elasto-diffusive phenomenon
Since interstitial hydrogen causes an expansion of the crystal

lattice of a solid metal, stress is induced by the gradient of

the hydrogen concentration in elastic solids. Stress is one of
the factors determining the chemical potential of components
of solid systems. Therefore, the self-stress resulting from the
gradient of the hydrogen concentration affects hydrogen
transport in metals.15-17) The influence of this stress (or strain)
on movement of hydrogen atoms is diagrammatically illus-
trated in Fig. 2.18)

The stress induced by the gradient of the hydrogen con-
centration is transmitted within the whole volume of the elas-
tic solid with the velocity of sound, namely more rapidly in
comparison with the rate of the Fickian diffusion. This
induced stress has again the local and non-local influences
on hydrogen diffusion. The former enhances the Fickian dif-
fusion, while the latter brings about the non-Fickian diffusion
in the opposite direction of the Fickian diffusion. The higher
the concentration gradient of the pre-charged hydrogen in the
electrode is, the larger become the two counterbalancing dif-
fusion fluxes.8,17)

The interaction between the inhomogeneity of the hydro-
gen concentration distribution and the induced stress can be
expected to be strongly dependent on the geometry of the
specimen employed and on the initial and boundary condi-
tions imposed during hydrogen transport. Thus, the particular
situations can be encountered where under the different expe-
rimental circumstances the diffusion process clearly loses its
classical character, i.e. the Fickian diffusion and becomes
hydrogen transport combining the Fickian diffusion with the
non-Fickian diffusion.8,19)

3. Model for Stress-Induced Diffusion

In order to theoretically analyse the influences of the
induced stress on hydrogen transport, we considered the sys-
tem composed of a one-component interstitial in a solid lattice
of pure metal or metallic alloy, e.g. hydrogen in Pd electrode.
The interstitial component is mobile in contrast to the heavy
metallic components which are practically at rest. This rigid
lattice forms a natural frame of reference for the flow of
interstitials. Here, this movement takes place within the
metallic electrode in the form of a flat plate of the thickness
L, as described in Fig. 3. Since the thickness of the electrode

Fig. 1. (a) Plot of the tensile deflection against time using a laser
beam deflection method, measured from the Pd foil electrode in 0.1
M NaOH solution by jumping various hydrogen pre-charging
potentials to the hydrogen discharging potential 0.9 V(RHE),2) and
(b) diagrammatic comparison of the shape of the electrode
specimen before and after hydrogen extraction.

Fig. 2. Schematic diagram of hydrogen movement in the presence
of the stress (or strain) field.
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specimen is smaller as compared to width (coordinate x) and
length (coordinate y), the analysis of hydrogen transport
through the electrode can be reduced to a one-dimensional
problem.

For the analysis of hydrogen transport, it is crucial that both
the left-hand and right-hand interfaces of the electrode spec-
imen should be sufficiently active with respect to a response
to the chemical potential of hydrogen in the gaseous phase.
Speaking more precisely, it was assumed that the chemical
potential of hydrogen at the electrode surface is equal to that
of gaseous hydrogen in contact with the surface considered.
The desired condition is that the changes in the chemical
potential with time are determined by the changes occurring in
the metallic bulk phase and not by the exchange of hydrogen
between the metallic phase and the surrounding gaseous
phase. Consequently, the surfaces with a high catalytic activity
are required for that condition. 

Since the main interest here is the chemical potential of
the mobile interstitial, it can simply be expressed as 

(1)

where µH is the molar chemical potential of hydrogen in the
metallic lattice; , the chemical potential of hydrogen
in the stress-free state (σ = 0); cH, the concentration of
hydrogen in the metallic lattice; VH, the partial molar volume
of hydrogen and σ represents the stress.

In Eq. (1), µH is generally a function of distance (z coordi-
nate) and time t

µH = µH(z, t)    for  0 ≤ z ≤ L (2)

where z = 0 and z = L are the left-hand and right-hand inter-
faces of the electrode specimen, respectively. cH is also,

under the most general conditions, a function of distance and
time:

cH =cH(z, t)     for  0 ≤ z ≤ L (3)

In fact, the term  in Eq. (1) is independent of the
stress and hence it relies only on the hydrogen concentration.
In this work, assuming that VH is independent of concentra-
tion and stress, namely distance-independent, σ is a function
of distance and time.

Since the diagonal (scalar) components of the stress tensor
contribute to the chemical potential of the mobile interstitial
in a thermodynamic point of view, the stress σ given in Eq. (1)
consists only of the hydrostatic diagonal components of the
overall stress tensor. It was experimentally verified that the
torsional stresses have no influence on the chemical potential
of the mobile interstitial.8,18) Thus, the stress in Eq. (1) can
be written as

(4)

where σii represents the diagonal component of the stress ten-
sor. In the case of one-dimensional hydrogen transport, Eq.
(4) can be simplified to a condition of plain stress as follows:

    for   (5)

In fluids, the left-hand side of Eq. (5) is identified with the
hydrostatic and isotropic pressure p

σ = -p (6)

In solids, however, we must distinguish between the external
hydrostatic pressure acting from outside of the electrode sur-
face and the internal stress tensor resulting from the gradient
of the concentration. In fact, the mobile interstitials do not
distinguish between the stress fields originating from the gra-
dient of the concentration and from the external hydrostatic
pressure. Both factors exhibit identical thermodynamic signifi-
cance. Thus the sedimentation and even the gas separation
created by the pressure gradient in a gravitational or centrif-
ugal field are equivalent in terms of this analogy to the con-
centration gradients created by stress fields in solids. The
latter is often known as the Gorsky effect.15,20)

The transport equation (modified Fick’s 1st law) for the flux
of hydrogen JH, diffusing in the bulk of the electrode specimen
along the z coordinate, caused by the gradient of the chemical
potential is8)

(7)

where LH is the phenomenological Onsager coefficient (in
terms of irreversible thermodynamics); DH, the diffusion coeffi-
cient of hydrogen in the metal electrode; {
=  (aH=the activity of hydrogen), the
thermodynamic enhancement factor; R, the gas constant; T,

µH µH
o

cH( ) VHσ–=

µH
o

cH( )
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o

cH( )
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Fig. 3. Schematic representation of a metallic electrode specimen in
the form of a flat plate of the thickness L considered in this
research. Width (coordinate x) and length (coordinate y) are larger
as compared to the thickness L.
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absolute temperature and γH denotes the activity coefficient
of hydrogen. Here, DH is assumed to be independent of cH.
For an ideal solution (γH = 1), the phenomenological Onsager
coefficient is simplified to

(8)

In order to solve Eq. (7), the relationship between the gra-
dients of cH and σ is necessary. For this purpose, the stress
induced by the gradient of the hydrogen concentration is
treated as analogous to the stress created by the temperature
gradient.21 In this respect, the thermal expansion coefficient
of the lattice is simply replaced by the partial molar volume
of hydrogen. The stresses are expressed as 

(9)

where Y denotes the bulk elastic modulus of the electrode
specimen, i.e. Y = E/(1 - v) where E and v are the Young’s
modulus and the Poisson’s ratio of the electrode specimen,
respectively, and ∆cH refers to the difference between cH and
cH, 0, the initial hydrogen concentration in the stress-free
state, i.e. ∆cH = cH -cH, 0. The gradient of the stress is given as

(10)

Inserting Eq.(10) into Eq. (7), Eq. (7) reduces to

(11)

In Eq. (11), the first term within the brackets describes the
local Fickian diffusion flux, which is proportional both to the
gradient of the hydrogen concentration and to the local con-
centration of hydrogen. Furthermore, the stress always
enhances the local diffusion, regardless of the sign of VH, as
does the non-ideality of the solution. The second term repre-
sents the non-local Fickian diffusion, which is proportional
to the product of the local concentration of hydrogen and the
integral of the concentration profile taken over the whole
thickness of the specimen (0≤z≤L). It should be emphasised
that the non-local Fickian diffusion term results due to the
distortion of the electrode specimen which creates movement
of hydrogen atoms induced by Gorsky effect in each volume
element of the specimen.

Differentiating the hydrogen flux JH with respect to z, the
following balance equation (modified Fick’s 2nd law) is
derived from Eq. (11) as:17,22-24)

(12)

Eq. (12) is a partial second order non-linear integro-differential
equation. The first term within the braces represents the Fickian
diffusion enhanced by the local effect of the stress. The second
and third terms represent the non-Fickian diffusion and result
from the effect of the induced stress. If the concentration gradi-
ent is small, the second term which is proportional to the square
of the concentration gradient will be negligibly small. However,
it is noted, as emphasised by Baranowski,8) “it could be a source
of interesting non-linear phenomena, including oscillations and
more complex dissipative structures”. The third term which is
proportional to the product of the concentration gradient and
the integral of the concentration profile is due to the asymmetry
of the hydrogen distribution with respect to the z = L/2 plane.

4. Numerical Analysis of Hydrogen Transport

In order to investigate the influence of the experimental
setups on the behaviour of the stress-induced diffusion pheno-
menon, numerical calculation should be performed with app-
ropriate initial condition and different boundary conditions,
i.e., the impermeable and permeable boundary conditions.

4.1. Nondimensionalisation
For the purpose of numerical analysis, nondimensionalisation

of variables and equations was carried out. The dimensionless
symbols are given as follows: 

Z = z/L (13)

(14)

(15)

(16)

where Z is the dimensionless distance; T, the dimensionless
time; C(Z,T), the dimensionless hydrogen concentration and J
refers to the dimensionless hydrogen flux. Additionally, in order
to make the problem more tractable, an assumption of ideal
thermodynamic behaviour of hydrogen atoms in the electrode
specimen, i.e. γH = 1, has been adopted throughout this paper.

Using the definition of the dimensionless parameters (13)
to (16), Eq. (12) is transformed into the dimensionless form
which is given by

(17)
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where , which can be regarded as a material
constant. The dimensionless flux also takes the form of 

(18)

4.2. Initial condition
The following initial condition was considered here.

C(Z, 0) = 0  for 0�Z�1 at  T = 0 (19)

The experimental realisation of this condition, as in the litera-
tures,10,15,21,25,26) assumed that prior to the main transport
experiment the electrode had been equilibrated with the exter-
nal pressure of hydrogen gas in one (impermeable boundary
condition) or in both (permeable boundary condition) of the
adjacent reservoirs, thus attaining a fixed uniform initial con-
centration cH,o. At T = 0, the beginning of the experiment, the
external hydrogen pressure in the left reservoir was instantly
raised to some higher value pl�pl,o, thus initiating the diffu-
sion process, where pl and pl,o are the instantaneous imposed
hydrogen pressure and the initial hydrogen pressure of the
left reservoir, respectively. This, in principle, requires introduc-
tion of an additional mechanically produced strain gradient
effect and causes a bending of the electrode specimen.1,10,15)

4.3. Boundary conditions
4.3.1. Combined permeable and impermeable boundary

conditions at the interfaces Z = 0 and 1
These conditions were theoretically considered by Larche

and Cahn21,25) who assumed that hydrogen atoms enter from
the Z = 0 plane, while the electrode is impermeable to hydro-
gen at the Z = 1 plane. The dimensionless hydrogen concen-
tration Cl at Z = 0, the left-hand interface of the electrode
specimen can be determined from the chemical potential
equality at Z = 0 and in the left reservoir. Since the induced
stress σ is given as a function of time at Z = 0 in Eq. (1), Cl

at Z = 0 should be time-dependent (C(0,T)), making the
instantaneous changes of the pressure in the left reservoir

and (20)

where Cl
* denotes the dimensionless equilibrium concentration

of hydrogen atoms at Z = 0 in the stress-free state of the elec-
trode, which are just in equilibrium with gaseous hydrogen
with the pressure pl imposed on the left reservoir.

Inserting Eq. (9) into Eq. (1) and changing the equation into
the dimensionless form, one obtains the relationship between
Cl and Cl

* which is given by

(21)

The impermeable boundary condition at the Z = 1 plane

implies

J(1, T) = 0 (22)

Eq. (22) constitutes just in fact the time-dependent Neumann
boundary condition for the concentration gradient at Z = 1, the
right-hand interface of the electrode specimen, which may
explicitly be written as

(23)

where Cr is the dimensionless hydrogen concentration at
Z = 1.

4.3.2. Permeable boundary conditions at the interfaces
Z = 0 and 1

These conditions were experimentally realised by Lewis and
his co-workers9,26-28) and were theoretically and experimentally
investigated by Baranowski.8) The boundary conditions for
this case differ from the impermeable boundary condition at
Z = 1, as described in the preceding section 4.3.1. The perme-
able boundary condition at Z = 0 is given as

and pl (T�0) = constant (20)

Instead of Eq. (22), the permeable boundary condition at
Z = 1 is given as 

and pr (T�0) = constant (24)

where  is the dimensionless equilibrium concentration of
hydrogen atoms at Z=1 in the stress-free state of the electrode.

4.4. Numerical simulation
Eq. (17) is numerically solved by using implicit Crank-

Nicholson method29,30) which is the most common technique
employed for the solution of electroanalytical diffusion prob-
lems. The electrode with the dimensionless thickness was
divided into the (N-1) segments, so that the distance interval
∆Z was determined to be 1/(N-1). The time step ∆T was
determined according to the usual convergence requirements 

(25)

In finite difference scheme, the continuous function of
C(Z,T) was finitised with centered finite difference for the
distance derivatives and forward finite difference for the time
derivatives. At any T= m∆T (m = 0, 1,2,�), the dimensionless
time, the numerical analysis of Eq. (17) by finite difference
method gives the following expression:
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(26)

where i represents the spatial grid points (i=1,2,�, N). 
By rearrangement of Eq. (26), the numerical solution to

the derived transport equation is obtained as

(27)

The dimensionless hydrogen flux through the left-hand
interface of the electrode specimen at T, is calculated under
the impermeable boundary condition by the following equa-
tion 

(28)

The dimensionless hydrogen flux through the right-hand
interface at T, is given under the permeable boundary condi-
tion by

(29)

Using the initial condition of Eq. (19) and the boundary
conditions of Eqs. (20) and (22), the dimensionless hydrogen
concentration profiles and the dimensionless hydrogen flux
were first numerically simulated from Eqs. (27) and (28),
respectively, by Simon and Grzywna�

31� Figs. 4(a) and (b)
give the results of the dimensionless hydrogen concentration
profiles across the electrode for  and of the
dimensionless hydrogen flux J(0,T) at Z = 0, respectively. Fig.
4(a) clearly showed that at early times of hydrogen transport
the dimensionless hydrogen concentration Cr(1,T = 1, 2, 3, 4,
5) at Z = 1 decreases below Cr = 0 (cH�cH,o at Z = 1), which
was predicted also by Kandasamy32) for the early time period
of hydrogen transport.

Fig. 4(b) indicated that J(0,T) abruptly decreases at early
times. In the case of large BocH,o values, the plots of J(0,T)
show negative transients, which indicated that hydrogen
atoms flow out of the electrode specimen instead of filling it.
These phenomena is rather strange from the experimental

point of view, but it may be possible by means of the simu-
lation, if the value of BocH,o can be made sufficiently high,
i.e. the larger value of the initial hydrogen concentration in
the electrode specimen. Furthermore, it requires substantially
longer times to attain the equilibrium the electrode specimen
with gaseous hydrogen with the external pressure for the high
BocH,o values.

Applying the initial condition of Eq. (19) and the boundary
conditions of Eqs. (20) and (24) to Eqs. (27) and (29), the
dimensionless steady-state concentration profiles and the
dimensionless hydrogen flux, respectively, were first numeri-
cally simulated by Simon and Grzywna.31) The results are
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Fig. 4. (a) Dimensionless hydrogen concentration profiles for
BocH,o=0.01 and (b) plots of the dimensionless hydrogen flux J(0, T)
at Z=0, the left-hand interface between the electrode and gaseous
hydrogen versus T, the dimensionless time, numerically simulated
from Eqs. (27) and (28), respectively, under the initial condition of
Eq. (19) and the boundary conditions of Eqs. (20) and (22).31)
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presented in Fig. 5. From Fig. 5(a), it was found that the
dimensionless steady-state hydrogen concentration profiles
are positive and simultaneously upward concave (d2C/dZ2

�0)
for all values of BocH,o.

Fig. 5(b) depicts the time dependency of the dimensionless
hydrogen flux J(1,T) at Z = 1. The characteristic feature of
the stress-induced diffusion phenomenon, i.e. the reverse flux
at early times, was very clearly observed. As the value of BocH,o

increases, the time interval for the reverse flow increases, and
eventually leads to the situation in which curve lies entirely
below the abscissae axes. The physical interpretation of this
fact is straight-forward: the initial hydrogen concentration in

the electrode specimen is so high that the reverse flux origi-
nating from the induced stress always exceeds the diffusion
flux resulting from the concentration gradient.

5. Concluding Remarks

The present article first explained the relationship between
hydrogen diffusion and macroscopic deformation of the elec-
trode specimen, including the classification of the diffusion-
elastic and elasto-diffusive phenomena. Then, this article dis-
cussed in detail the elasto-diffusive phenomenon, which is
often called Gorsky effect, based upon the theoretical model
for stress-induced diffusion. Finally, the present article theo-
retically confirmed the reverse flux of hydrogen atoms in the
pre-charged electrode at the early stage of the experiment
under the different boundary conditions.

From the results of this article, it was proposed that the
self-stress induced by the inhomogeneity of the concentration
distribution affects the transport of hydrogen, i.e. the reverse
flux against the diffusion flux originating from the gradient of
concentration. In addition, it was also found that the intensity
of the reverse flux increases with increasing value of the pre-
charged concentration. 
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Nomenclature

Bo material constant,  2VH
2Ys/3RT (cm3 mol-1)

cH concentration of hydrogen in the metallic lattice
(mol cm-3)

cH,o initial hydrogen concentration in the stress-free state
(mol cm-3)

C dimensionless hydrogen concentration
Cl dimensionless hydrogen concentration at Z=0, the

left-hand interface of the electrode specimen
Cl

* dimensionless equilibrium concentration of hydrogen
atoms at Z=0 in the stress-free state 

Cr dimensionless hydrogen concentration at Z=1, the
right-hand interface of the electrode specimen

Cr
* dimensionless equilibrium concentration of hydrogen

atoms at Z=1 in the stress-free state 
DH diffusion coefficient of hydrogen in the electrode

(cm2 s-1)
E Young’s modulus of the electrode specimen (Pa)
i spatial grid point
J dimensionless hydrogen flux
JH flux of hydrogen (mol cm-2 s-1)
L thickness of the electrode specimen (cm)
LH phenomenological Onsager coefficient (mol2 J-1 cm-1 s-1)
p hydrostatic (usually isotropic) pressure (Pa)
pl instantaneous imposed hydrogen pressure of the left

reservoir (Pa)
pl,o initial hydrogen pressure of the left reservoir (Pa)

Fig. 5. (a) Dimensionless steady-state hydrogen concentration
profiles and (b) plots of the dimensionless hydrogen flux J(1, T) at
Z=1, the right-hand interface between the electrode and gaseous
hydrogen against T, the dimensionless time, numerically simulated
from Eqs. (27) and (29), respectively, under the initial condition of
Eq. (19) and the boundary conditions of Eqs. (20) and (24).31)
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pr instantaneous imposed hydrogen pressure of the
right reservoir (Pa)

R gas constant (J mol-1 K-1)
t time (s)
T absolute temperature (K)
VH partial molar volume of hydrogen (cm3 mol-1)
x width of the electrode specimen (cm)
y length of the electrode specimen (cm)
Y bulk elastic modulus of the electrode specimen, 

E/(1-v)  (Pa)
z distance (cm)
Z dimensionless distance
∆Z distance interval
γH activity coefficient of hydrogen
µH molar chemical potential of hydrogen in the metallic

lattice (J mol-1)
v Poisson’s ratio of the electrode specimen
σ stress (Pa)
σii diagonal components of the stress tensor (Pa)
T dimensionless time
∆T time step 
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