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Abstract : This article covers the fundamentals of percolation phenomenon giving emphasis to the percolation concept
involved in disordered electrochemical systems. After a brief discourse on the basic concepts of percolation theory, the
geometrical properties and fractality of percolation clusters were presented. Then, anomalous behaviours of diffusion
in percolation clusters were explained in terms of the fractal structures of the infinite percolation clusters. Finally,
the conductivity-related properties of composite ionic materials were shortly discussed on the basis of percolation
theory from practical points of view.
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1. Introduction

Percolation, which is defined as the development of long-
range connectivity in a random system, has been extensively
studied to explain many physical phenomena in such
research fields as electricity, magnetism, electrochemistry and
materials science.1-4) Since the concept of percolation was first
introduced by Flory and Stockmayer5,6) who investigated the
gelation process of polymers, the knowledge of geometrical
and probabilistic concepts of percolation phenomenon has
been accumulated by numerous researchers.7,8)

The basic ideas of percolation have proved to be helpful
for an understanding of the principles underlying the structure
and geometrical properties of colloidal particles,9) and the
diffusion/conduction process in disordered systems such as
porous and amorphous materials10-13) and composite materi-
als.14,15) Especially, theoretical and experimental studies on
charge conduction in composite materials based upon perco-
lation theory have recently led to considerable advance in the
development of electrode and electrolyte materials for sec-
ondary rechargeable batteries and fuel cells.16,17)

The objective of this article is to overview the fundamental
aspects of percolation theory and its basic concepts in disordered
electrochemical systems. Firstly, we presented the static aspects
of percolation such as the geometrical properties and fractality
of percolation clusters. Secondly, we discussed in detail anom-
alous behaviours of diffusion in the percolation clusters arising
from the fractal structures of the infinite percolation clusters.
Finally, we briefly described the conductivity-related properties
of composite ionic materials, which are most relevant to the
percolation phenomenon, from practical points of view.

2. Fundamentals of Percolation Theory

2.1. Basic concepts of percolation theory
In percolation theory, a lattice is built up of sites and

bonds. The simplest type of percolation system is the lattice
which is purely comprised of either the site percolation or
the bond percolation. Let us first consider a periodic lattice
of sites in a 2-dimensional (2D) space, and assume that every
site in this lattice can be in one of two states, occupied or
empty. Occupied and empty sites may stand for very differ-
ent intrinsic properties. Each site is randomly occupied with
a probability p or is empty with a probability (1 � p).

Figs. 1(a) to (c) show the typical examples of the site per-
colation in a 2D square lattice determined at various values
of p. It is seen from Fig. 1(a) that at a small value of p, e.g.
p = 0.400, a site is either isolated or forms a small and finite
cluster with nearest-neighbour sites. As the value of p
increases, the average size of clusters gradually increases,
and then at a certain value of p, e.g. p = 0.593, an infinite cluster
appears which extends from one end of a lattice to the other,
as demonstrated in Fig. 1(b). Such a cluster is now called the
percolation cluster, and the probability at which the percolation
cluster first emerges is referred to as the percolation threshold
probability pc of site occupancy. The finite and infinite clusters
grow larger with further increasing p above pc, as shown at
p = 0.700 in Fig. 1(c).

Similarly to the case of the site percolation, one can intro-
duce the bond percolation where a bond between two sites is
randomly occupied. In the bond percolation, any of the occu-
pied bonds belong to the same cluster, if they are connected
with each other by a continuous path of the occupied bonds.
At the percolation threshold probability of bond occupancy,
the percolation cluster appears abruptly in a lattice. The bond
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percolation concept has been mainly applied to the random
resistor model for charge conduction in composite materials1)

and the gelation and polymerisation processes involved in the
sol-gel synthesis.18,19)

Considering that most of the disordered systems lack a per-
fect lattice structure, it seems that the position of occupied
component, site or bond, may not be restricted to the discrete
sites of a regular lattice. For instance, the so-called continuum
percolation allows to sites or bonds overlap with one another
in a uniform lattice. This percolation model has frequently been
used to describe the transport phenomena in porous mate-
rials20) and hopping conduction in doped semiconductors.21)

The three kinds of percolations described above, i.e. the site
percolation, the bond percolation and the continuum percolation,
are illustrated in Figs. 2(a) to (c), respectively.

It should be stressed that the infinite percolation cluster appears
abruptly in a lattice at p = pc. Practically, this means that the
system under study has quite different intrinsic characteristics
below and above pc. As a simple example, one can consider
the electrical conductivity of composite system composed of a
mixture of conducting and insulating materials. In general, the
transition from the insulator to the conductor occurs suddenly
when the fraction of the conducting materials increases to the
critical value which conceptually corresponds to pc. In perco-
lation phenomena, therefore, special attentions are given to

the percolation threshold probability pc.
It is well known7,8) that the value of pc is determined not only

by the kind of occupied component, but also by the dimension
and the structural details of lattice (e.g., square, triangular,
etc.). The unique value of pc can be analytically calculated for
some kinds of 2D lattices in a simple manner, whereas it can
be exactly evaluated for three or higher dimensional lattices,
only by employing the numerical methods such as Monte
Carlo simulation.22) Table 1 summarises the typical values of
pc theoretically determined for common 2D and 3D lattices.23)

Fig. 1. Typical examples of site percolation in a 2D square lattice determined at various values of p: (a) p = 0.400, (b) p = 0.593, and (c) p =
0.700.

Fig. 2. Typical examples of the three kinds of percolations in a 2D lattice: (a) site percolation, (b) bond percolation, and (c) continuum
percolation.

Table 1. Typical values of the percolation threshold probabilities pc

calculated for common 2D and 3D lattices.23)

Lattice

Dimension
Lattice Type

pc

Site 

Percolation

Bond 

Percolation

2

Honeycomb(Hexagonal) 0.696 0.653

Square 0.593 0.500

Triangular 0.500 0.347

3

Simple cubic 0.312 0.249

Body centered cubic 0.245 0.178

Face centered cubic 0.198 0.119
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2.2. Distribution of percolation clusters and critical
behaviour of percolation transition

In general, the percolation transition taking place at p = pc

is closely related to the distribution and sizes of the finite
clusters being present in the narrow ranges of p below and
above pc, i.e. 0�  p� pc � 1, which is termed the critical
regime. So, it is of great importance to determine the geomet-
rical properties of the finite and infinite clusters in the critical
regime.

The most fundamental problem concerning the geometrical
properties of the infinite percolation cluster is to estimate
how many occupied sites belong to the infinite percolation
cluster in the lattice. It is thus useful to introduce the percola-
tion probability P∞ which is defined as the number of occupied
sites in the infinite cluster divided by the total number of
occupied sites in the lattice at a given p. Since there exists no
infinite percolation cluster at p�pc, P∞ should be always
zero below pc. In the critical regime, however, P∞ increases
drastically with p. Now the variation of P∞ with p in the crit-
ical regime can approximate to the following power law:

(1)

where β is the critical exponent for the percolation probability
P∞. The value of P∞ approaches unity with further increasing
p beyond the critical regime.

In addition to P∞ describing the geometrical properties of
the infinite cluster, now let us consider the parameters, char-
acterising the geometrical properties of the finite clusters such
as the distribution and size of the finite clusters. 

The statistical distribution of the s-sized finite clusters in
the lattice, where s means the number of sites in the cluster, is
described in terms of the cluster density ns. Here ns is defined
as the number of the finite clusters including s occupied sites
divided by the total number of occupied and empty sites in a
lattice at a given p. For a sufficiently small value of s, ns can
be calculated in a straightforward way by counting the number
of permissible configurations of clusters which are called the
‘lattice animals’.7) However, for a sufficiently large value of
s, the calculation of ns becomes quite cumbersome and thus
it should be helped by the computer simulation, for example,
the Hoshen-Kopelman method.24)

Remembering that the infinite percolation cluster is abruptly
formed at p = pc, it follows that the mean size of the finite
clusters, S, diverges when p approaches pc from below and
above, and hence S may also exhibit a power law behaviour
in the critical regime,

(2)

where γ is the critical exponent for the mean size of the finite
clusters S. In Eq. (2),  simply means the fraction of
occupied sites which belongs to the finite clusters in a lattice.

Practically, the size of the finite cluster is often characterised
by the correlation length ξ which represents the root mean
square distance between two occupied sites in the same finite

cluster,

(3)

with (4)

where ri and rj denote the positions of the ith and jth sites in
the lattice, respectively. Here, it should be pointed out that ξ
does not mean an average radius of the finite clusters but a
maximum size of the finite clusters above which the clusters
are exponentially scarce. In the same manner as does S, ξ
diverges near p = pc, leading to a power law behaviour in the
critical regime,

(5)

where ν designates the critical exponent for the correlation
length ξ. The typical plots of P∞ and ξ versus p are given for
a 2D square lattice at pc = 0.593 in Fig. 3. The values of the
critical exponents β, γ and ν are also listed for the 2D and
3D lattices in Table 2.23) It should be noted that such critical
exponents are essentially independent of the kind of occupied
component and the structural details of lattice, but they depend
only on the dimension of a lattice. 

The physical properties associated with the percolation
transition are characterised by the critical exponents β, γ and
ν. A representative example of the percolation transition is
the magnetic phase transition which occurs at a critical tem-
perature Tc. In this case, the finite cluster at p�pc and the

P∞ p( ) p pc–( )β∝

S p( ) sns
s 1=

s ∞=

∑ p( ) p pc–
γ–∝ ∝

s ∞=
Σsns p( )

s 1=

ξ p( )2

Rs
2

s 1=

s ∞=

∑ s
2
ns p( )

s
2
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∑ p( )

------------------------------------=
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2

2 ri rj–
2
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j i=

∑
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∑
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2

------------------------------------------=

ξ p( ) p pc–
v–∝

Fig. 3. Plots of correlation length ξ(p) and percolation probability
P∞(p) as a function of probability p calculated for a 2D square
lattice at pc = 0.593.
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infinite cluster at p�pc correspond to a disordered phase at
high temperatures above Tc and an ordered phase at low tem-
peratures below Tc, respectively. Moreover, the temperature-
dependencies of Gibbs free energy, spontaneous magnetisation
and susceptibility near T = Tc can be satisfactorily described
by the power law behaviours of ns, P∞ and S, respectively, in
the critical regime,8) and then such physical properties are
uniquely determined by the critical exponents β, γ and ν,
respectively. 

3. Fractal Structure of Percolation Cluster

The structure of the infinite percolation cluster at p� pc

can be well described by the fractal concept. Figs. 4(a) to (d)
illustrate the pictures of the percolation cluster taken on dif-
ferent length scales.25) From Figs. 4(a) and (b) taken on the
length scales larger than ξ, it is seen that the percolation
cluster has almost the compact structure, implying that the
percolation cluster has just the Euclidean dimension dE of 2.
In this case, the mass M of the percolation cluster within a
circle of radius R varies with R as follows:

   for  R� ξ (6)

However, if one takes the pictures of the percolation cluster
on the length scales smaller than ξ and then magnifies them
to the original size as presented in Figs. 4(c) and (d), those
pictures look almost the same: the percolation cluster is self-
similar. This means that the percolation cluster itself and its
surface may behave as fractals. As a result, the percolation
cluster can be regarded as a mass fractal with a fractal
dimension dF on any length scale smaller than ξ. In case that
the percolation cluster behaves as a mass fractal, one can
then write the relationship between M and R of the cluster as

   for  R � ξ (7)

The values of dF for the percolation cluster are well known
to be 1.33 for a 2D lattice and 1.9 for a 3D lattice, regardless
of the structural details of the lattice�

23)

Now, one can assert that the length scale R acts as a yard-
stick length for probing the mass fractal topography of the
percolation cluster and at the same time the correlation
length ξ corresponds just to the characteristic upper bound of
R, i.e. the spatial outer cut-off of fractality, where the perco-
lation cluster shows a fractal characteristics with self-similar
scaling properties.26-28) Here, it should be reminded that ξ
diverges at p = pc. This means that at p = pc, the percolation
cluster exhibits a fractality on all length scales.

For the case of R� ξ, M of the percolation cluster is lin-
early proportional to the number of the occupied sites that
belong to the percolation cluster, , so that we obtain
the following equation from Eq. (1):

(8)

In addition, M depends linearly on the number of unit cells
with a size ξ, , multiplied by the mass of each cell
that is proportional to ,

(9)

From Eqs. (8) and (9), it follows that the mass fractal dimen-
sion dF of the percolation cluster can be expressed in terms
of the critical exponents β and ν 8):

(10)

From Eq. (10), it is clear that the dF value of the percolation
cluster is always smaller than that value of dE of the Euclidean
space. This is due simply to numerous holes that exist in the
percolation cluster.

The renormalisation group method, which is commonly used
to determine the critical exponents, is largely based upon self-
similar scaling properties of the percolation cluster at p = pc.
Since ξ of the percolation clusters diverges at p = pc, the per-
colation cluster shows the self-similar properties on all length
scales R, and hence one can reorganise the percolation cluster

M R( ) R
dE∝

M R( ) R
dF∝

R
dEP∞

M R
dE∝ P∞ R

dE∝ p pc–( )β

R ξ⁄( )
dE

ξdE

M R ξ⁄( )
dE∝ ξdF R

dE∝ p pc–( )
ν dE dF–( )

dF dE β ν⁄–=

Table 2. Typical values of the critical exponents β, γ and ν for the
percolation transition calculated for 2D and 3D lattices.23)

Critical
exponent

Lattice dimension

2 3

β 5/36 0.4

γ 43/18 1.8

ν 4/3 0.9

Fig. 4. The pictures of the percolation cluster taken on different
length scales in a 2D square lattice; (a) and (b) : on the length scales
larger than ξ , (c) and (d) : on the length scales smaller than ξ.25)
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in a lattice by averaging over regime of size b. Such averaging
procedure is called the ‘renormalisation’.

Fig. 5 shows the schematic diagram of the renormalisation
group transformation in a 2D triangular lattice. If one trans-
forms a given triangular lattice by using the renormalisation
group method, a site in a original lattice is replaced by a
supersite in a renormalised triangular lattice, in which the lat-
tice constant is enlarged by a factor . Here, three sites
of an original lattice form the occupied supersite, when at least
two sites are occupied, otherwise, the empty supersite forms.
In Fig. 5, the closed and open circles denote the occupied and
empty sites of an original lattice, and closed and open squares
represent the occupied and empty sites of a renormlaised lat-
tice, respectively.

In the original lattice, the correlation length ξ exhibits a
power law,

(11)

where ξο is the measure of the lattice constant. In the new
superlattice, ξ can be also written as

(12)

where  and p' is the probability that a site in the
superlattice is occupied. Since the value of the correlation
length remains actually unchanged, irrespective of the renor-
malisation group transformation, due to the self-similar scaling
property,  should be equal to , and hence we obtains from
Eqs. (11) and (12)

(13)

Using the renormalization group method, the value of ν for ξ
of the percolation cluster in a 2D triangular lattice is deter-
mined to be ca. 1.355, which is in good agreement with the
exact value of 4/3.8)

4. Transport in Percolation Clusters

Keeping in mind that the percolation cluster shows a mass
fractality with self-similar scaling properties, it seems evident
that the physical laws of dynamics determined in the perco-
lation cluster are quite different from those laws in a regular
lattice. In particular, the diffusion and conduction processes
in the percolation clusters have been extensively studied29-31)

due to a close analogy between a percolation system and a
disordered system. De Gennes32) was the first to suggest that
transport in a disordered system could be successfully analysed
using the random walk simulation in the percolation clusters.
This random walk algorithm has been widely used to quanti-
tatively measure the diffusivities in various disordered systems.

Now let us consider the diffusion behaviour in the finite
clusters at p�pc and the infinite percolation cluster at p� pc.
It is generally accepted that the root mean square displacement

of a random walker acts as a yardstick length for prob-
ing the mass fractal topography of the percolation cluster
during the diffusion process. For simplicity, we assume tξ as
the temporal outer cut-off of fractality at which the value of

 becomes comparable with the value of ξ.
At p�pc, the infinite percolation cluster has the compact

and homogeneous structure for � ξ, and hence the
value of  is linearly proportional to the diffusion time
t, implying the Fick’s first law:

�t     for  p > pc and t � tξ (14)

In this case, the diffusivity D of a random walker in the per-
colation cluster has a constant value,

= const.  for  p > pc and t � tξ (15)

Since the conductivity σ is characterised by a power law,
, one gets from the Einstein relationship between

σ and D and from Eq. (1) the following scaling law of D in
the critical regime:

   for  p > pc and t � tξ (16)

where µ is the critical exponent for the conductivity σ.
On the other hand, the infinite percolation cluster behaves

as a mass fractal for � ξ, the diffusion law exhibits the
anomalous behaviour which shows a strong deviation from
the Fick’s diffusion law as follows:

   for  p > pc and t� tξ (17)

where dw represents the anomalous diffusion exponent of the
random walk. In general, the value of dw for diffusion in the
percolation cluster is theoretically determined to be larger
than 2 for the ideal diffusion behaviour, which indicates that
the structural disorders of the percolation cluster such as dan-
gling ends, bottlenecks and backends slow down the move-
ment of diffusing particles. From Eq. (16), D is given as

b 3=

ξ ξ o∝ p pc–
v–

ξ' ξ'o∝ p' pc–
v–

b ξ'o ξo⁄=

ξ' ξ

v
bln

p' pc–

p pc–
--------------- 

 ln

--------------------------=

r
2〈 〉

r
2〈 〉

r
2〈 〉

r2 t( )〈 〉

r2 t( )〈 〉

D p( ) r2 t( )〈 〉
t

----------------=

σ p pc–( )µ∝

D p( ) p pc–( )µ β–∝

r
2〈 〉

r2 t( )〈 〉 t
2 dw⁄

∝

Fig. 5. Schematic diagram of the renormalization group
transformation in a 2D triangular lattice. The closed and open
circles represent the occupied and empty sites in an original lattice,
respectively. The closed and open squares represent the occupied
and empty sites in a renormalised lattice, respectively.
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 for  p > pc and t� tξ (18)

At p = pc, the infinite percolation cluster is self-similar for
all the values of (i.e.  and ), so that the
anomalous diffusion described by Eqs. (17) and (18) with
dw > 2 takes place over the whole range of t. Finally, at
p < pc, there is no infinite percolation cluster, but all clusters
in the lattice have finite sizes: the sizes of the largest finite
clusters are nearly equal to ξ, and hence the value of 
approaches ξ with increasing t. Therefore, from Eq. (5), one
obtains the following scaling law of D in the critical regime:

 for  p < pc and t� tξ (19)

The characteristic behaviours of diffusion in the finite and
infinite clusters mentioned above are clearly shown in the
plots of log  versus log t for a 2D square lattice given in
Fig. 6.7)

According to Alexander-Orbach conjecture,33) it is assumed
that the anomalous diffusion exponent dw is approximately
related to the mass fractal dimension dF of the percolation
cluster as follows:

   for  dE ≥ 2 (20)

An interesting feature of this conjecture is that it provides a
relationship between dw, characterising the kinetic properties
of the percolation cluster, and dF, describing the static geo-
metrical properties of the percolation cluster.

Besides the infinite percolation cluster, diffusion-limited
agglomerates,34) lattice animals,35) and such deterministic fractal
lattices as Sierpi ski gasket and carpet36) are typical examples
of disordered systems for which the above-mentioned abnor-
malities in the diffusion behaviour have been observed.

5. Application of Percolation Concept to 
Composite Ionic Conductors

Since Liang37) observed an enhancement of the ionic con-
ductivity by a factor of almost 50 at a certain content of dis-
persed small alumina (Al2O3) in the matrix of lithium iodide
(LiI), a substantial research has concentrated on the percola-
tion phenomena to explain the conductor/insulator transition
in dispersed ionic conductors.37-44) Although the analytical
expression for the ionic conductivity proposed by Maier38)

based upon the effective medium approximation could fit quite
well to experimental results obtained from many composites
of ionic conductors in a wide range of composition, it can not
exactly explain the behaviour of the ionic conductivity near a
critical point for the ionic conductor/insulator transition. The
ionic conductor/insulator transition observed in dispersed
ionic conductors was thoroughly discussed in terms of the
percolation transition by Bunde et al..39,40)

Fig. 7 shows the schematic diagrams of three-component
bond percolation model for the dispersed ionic conductor
proposed by Bunde et al..41) This model is constructed by
randomly selecting the occupied elementary squares with a
probability p on a square lattice, which represent the insulating
phase (A). The remaining empty squares correspond to the
conducting phase (B). The distribution of both phases leads to
a correlated bond percolation model with three types of bonds,
i.e. AA-bond, BB-bond and AB-bond in the boundary between
A and A, between B and B, between A and B, respectively,
as illustrated in Fig. 7. Here, bond in the boundary between
phases A and B represent the highly conducting component
(AB-bond).

D p( ) r2 t( )〈 〉
t

---------------- t
2 dw–( ) dw⁄

∝=

r
2〈 〉 ξ ∞→ tξ ∞→

r
2〈 〉

D p( ) r2 t( )〈 〉
t

---------------- t
1–

p pc–
2υ–∝=

r
2〈 〉

dw
3
2
---dF≈

n′

Fig. 6. Plots of logversus log t on the percolation clusters generated
at various p on a 2D square lattice.7)

Fig. 7. Schematic diagram of a three-component percolation model
for dispersed ionic conductors, for different probability p of the
insulating material. The insulator phase is represented by the gray
area (A), the conductor phase by the white area (B). The bonds can
be highly conducting (AB-bond, bold line), normal conducting (BB-
bond), or insulating (AA-bond) : (a) p < pc, (b) p = pc, (c) p = ps and
(d) p > ps. 
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A remarkable feature of this model is the existence of two
threshold concentrations. Let us now discuss about the quali-
tative behaviour for the conductivity expected from Figs. 7(a)
to (d). Since there are no continuous paths comprised of AB
bonds from one end of lattice to the other for p < pc, as
shown in Fig 7(a), the current would not flow through the
system. A pronounced increase of the conductivity is
expected for p = pc, when a macroscopic path consisting only
of ΑΒ bonds is formed as shown in Fig. 7(b). However, as
the value of p increases, one encounters the second critical
probability ps = 1 - pc at which the conducting bonds start
forming closed loops inside the system as demonstrated in
Fig. 7(c), and thus the conductivity drops drastically, leading
to the conductor to insulator transition. Since there are no con-
tinuous paths comprised of AB bonds above ps as presented
in Fig 7(d), the system exhibits insulating behaviour. The
values of pc for 2D and 3D lattices were determined to be
0.41 and 0.097, respectively, by Bunde et al..25)

However, the bond percolation model for the dispersed ionic
conductor proposed by Bunde et al. is unlikely to be realistic
for most systems from the following viewpoints: firstly, Bunde
et al. assumed equal grain sizes of ionic conductor and insu-
lator, although micro-sized ionic conductor particles and
nano-sized insulator particles were mostly used in disordered
composite materials.42) From the numerical simulation of the
conductivity behaviour in a two-dimensional system with
various sizes of the insulator particles, Roman et al..43) found
that as the particle size decreases, while the thickness of the
highly conducting interfacial layer is fixed, the maximum value
of the conductivity appears at a smaller value of p. Next, a
random distribution of ionic conductor and insulator particles
was assumed in the bond percolation model by Bunde et al.,
but the interfacial interactions between ionic conductor and
insulator particles and the smaller sizes of insulator particles
lead to the formation of continuous layers of insulator around
the larger conductor particles. Debierre et al..44) reported that
size of  conducting component is inversely proportional to the
volume fraction of insulator component by considering the
interfacial interactions.

In recent times, the major interest has been manifested in
commercial development of nano-sized ionic composite
materials based upon the percolation model.42,45) Indris et al.42)

have contributed substantially to the understanding of the
conductivity behaviour in nano-sized ionic composite materials.
They successfully described the conductivity behaviour of
Li2O:B2O3 composite material by employing the continuum
percolation model.46)

6. Concluding Remarks

The present article first explained the fundamental aspects of
percolation phenomenon, including the geometrical properties
and fractality of percolation clusters. Then, this article discussed
in detail the abnormal diffusion behaviours of percolation
clusters, which arise from the fractal structures of the infinite
percolation clusters, in relation to the transport phenomenon
in a disordered system. Finally, the present article briefly

described the conductivity-related properties of composite
ionic materials, which can be satisfactorily explained on the
basis of percolation theory, from practical points of view.

Consequently, it is recognised that the percolation theory
provides an effective tool to treat complex problems related to
the geometrical properties and distribution of dispersed phases
in disordered electrochemical systems. Especially, it is certain
that the fractal characteristics of the percolation clusters and
the relevant kinetic properties will be very useful for analysing
atypical behaviours frequently observed in potentiostatic cur-
rent transients and ac-impedance spectra from the disordered
materials, e.g. porous and amorphous electrodes for second-
ary rechargeable batteries and fuel cells.16,17,47,48)
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