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Abstract : This article involves the application of the fractal geometry to interfacial electrochemistry. Especially, we
gave our attention to impedance behaviour of the fractal electrode. First, this article briefly explained the constant
phase element (CPE) in electrochemical impedance and the de Levie’s transmission line model. Second, we introduced
the Nyikos and Pajkossy’s theoretical works to approach the CPE phenomena using the fractal geometry. Finally this
article presented other various fractal models for analysing the ac response of the rough electrodes.
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1. Introduction tions turn out to be much complicated and a straightforward
analytical calculation of the overall impedance is usually not
Electrochemists have long been puzzled by the appearancgossible. In connection with this topic, the fractal geometry
of the constant phase element (CPE) or capacitance dispehas given a powerful tool for the analysis of the CPE behav-
sion in electrochemical impedance of ideally polarisab#e (iour of the rough electrode. A number of theoretical p&R&rs
blocking) electrode, and considerable effort has been made thave devoted to investigate the relationship between the frac-
understand the origin of the CPE. One of the most possibleal geometry of the electrode and the CPE impedance.
causes of the CPE is known to be of geometric origin : An This article explained the transmission line model for the
irregular and porous electrode geometry causes current deranalysis of the CPE impedance. In addition, we introduced
sity inhomogeneities and thus yields deviations from idealthe Nyikos and Pajkossy's works on the ac response of the
behaviour. fractal blocking electrode. Finally, this article presented vari-
Most of the contributions to the impedance of the porousous fractal models for the analysis of the ac response of the
electrodes deal with transmission line modélsThe trans- rough and irregular electrode.
mission line models usually consider the one-dimensional
ionic movement in the electrolyte. Although in some ¢a@es 2. Constant Phase Element (CPE) in
transmission line models have been more or less successful Electrochemical Impedance
in explaining the observed impedance behaviour of the
porous electrode, the most serious objection to the transmis- It has been known for a long time that in the absence of
sion line model is the implicit assumption that the curvature faradaic reactions, the impedance of an electrode in contact
of the equi-potential surfaces can be neglected in the calculawith an electrolytic solution usually deviates from the purely
tion. That is, the transmission line model can be safely usedtapacitive behaviour, and thus simple RC circuit does not
only for the pores with a depth much larger than their width. give an adequate description of the ac response of the elec-
More realistic morphologies can be taken into account bytrode. The electrochemical impedance of a real electrode is
the exact frequency-dependent potential distribution within frequently represented by an equivalent circuit containing
the entire electrolyte. However, In general these real situa-constant phase element (CPE) showing power law frequency
dependence as follows :
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, whereo and a mean the CPE coefficient and the CPE 0.5 . .
exponent, respectively, andrepresents the angular frequency. | | LT

In recent years it has been demonstrated by many researct
ers that the deviation from ideal capacitive behaviour
observed on a real electrodes. CPE exponentr is inti-
mately related to surface roughness. Now we focus our atten
tion on those cases when the origin of the CPE behaviour is
purely geometrical. Such behaviour has often been found ir
the porous, rough, and irregular electrode.

The attempt to model the effect of surface roughness on T
the electrochemical impedance was successfully carried ou 4 A I: 4
by de Levie"® He represented a surface pore by a transmis- o fope— | =,
sion line as shown in Fig. 1, and derived the following '
expression for the impedance of the p&g,
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, wherer andc are resistance and capacitance per unitFig. 3. Pore shapes treated by Keiseet al) and corresponding
pore depth, respectively, adis pore depth. The resultant Ccomplex-plane impedance plots.
impedance locus is plotted in Fig. 2. At high frequencies,

Eqg. (2) reduces to Although de Levie's work succeeds in explaining qualita-
05 tively the observed impedance behaviour of the porous elec-
Zy(high freq) = (1—j)E~2—£—)CD 3) trode, many assumptions and approximations limited the

ability of the model to represent accurately the measured
and the interfacial impedance has a phase angte 45 impedance data. The assumptions include the cylindrical

whereas at low frequencies Eq. (2) can be written as shape of the pore, the lack of tortuosity of the pore, the lack
of distribution of pore sizes and depths, and finally the lack
Zy(low freq ) = R 4 of cross linking between pores.
jawcL 3 .
Over the years, many attempts have been made to improve
and the phase angle tends towards 90 de Levie's cylindrical pore model. Especially Keissral®

showed that the more occluded the shape of the pore, the
r r r r r more the impedance locus was distorted from capacitive
—MA WA YWW VW YW behaviour (Fig. 3). Nevertheless, although the total imped-
L l J. L ance will reflect more or less the shape of the individual
TC TC TC TC pore, the single pore models still do not account for the
________ effects of the random distribution of pores on the surface and
Fig. 1. The equivalent circuit of a pore invaded by a conducti the random variations in pore geometry or the complicated
electrolyte (de Levie’s transmission line model). surface topology. Many researchers tried to modify the single
pore model on various assumptions about pore distribution
05 and pore sizegtc???® However, the increased complexity of
the models and many assumptions would tend to undermine
. its credibility and usefulness, and to prevent one from draw-
. ing meaningful conclusions.
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e 3. Ac Response of Fractal Blocking Electrodes :
Nyikos and Pajkossy’s Works
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The situation changed drastically in the mid-1980s after
o! 3 Mandelbrot's book on fractals. The first papers based upon

o
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the fractal geometry appeared claiming that solid surfaces
(both porous and rough) can be modelled by fraétis.
Since those works, the questions raised by many theoreti-
cians were whether or not the impedance response of capac-
b 0f1 - sz . ofs — 074 o5 itive electrodes of the fractal geometry is of CPE type, and if
it is, whether or not there is some correlation between the
CPE exponentr and the fractal dimensidDy.
Fig. 2. The complex-plane impedance plot of a cylindrical pore. Many fractal models have been developed to give the
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answer. One group of fractal models is based upon the scal- Alternatively we obtained easily the following equation
ing laws of surface capacitance and solution resistance. Sinckom Eq. (1).

dilatational symmetry is a basic feature of fractals, one can V(1 Dy—1 LAl Dy-1
set up equations which relate the system size and the fre- (1, wm ) - (1, com )
. Y(1, w) 171, w)
quency dependence of impedance. Another group of fractal
. ) Dy—-1.0
models has been developed by generalising the pore models _ o(jwm ) (mDH—l)a 12)
by assuming branching pores or by introducing a fractal size o(jw)®

distribution of an ensemble of pores or caves. These models
have become fairly popular because the impedance can be Then, from Egs. (11) and (12), we finally obtain
calculated easily. In this Section, we explain the former

group of the models (especially the model by Nyikos and a = ﬁ (13).
Pajkossy"), and in the following Section, we present the lat- H
ter group of the models. Thus, the CPE exponentbecomes the measure of surface

Nyikos and Pajkossy started by noting that any two-ter- irregularity. For example, for a perfectly smooth surface with
minal RC network can be written as the parallel combinationDy =2 at all scales, Eq. (13) predicts=1, i.e. purely
of a number of series RC circuits. For one such series circapacitive behaviour. In other limit &84~ 3, a - 0.5

cuit, the elementary admittance is expressed as which is de Levie's well-known result for the electrode with
. cylindrical pore. Eqg. (13) also implies that surfaces with dif-
Y, = (Z )_l = H? + 1 ot J.wck 5) ferent morphologies but with the same fractal dimension are
K K K" joC U 1+jwR.Cy

equivalent as far as impedance is concerned.

so that the admittance of the entire parallel assembly fol-

lows as 4. Various Fractal Models for Ac Response of

Rough Blocking Electrodes
Y= SYe= Y (6). o . o
” ” 1+ jwRCy 4.1. Sierpinski fractal electrode |:Nyikos and Pajkossy’s
modef?

The R, and Cy are elementary resistance and capacitance, The cell geometry is based on the Sierpinski carpet or gasket
respectively. Now let us enlarge the whole system in each(Fig. 4 (a)-(c)j* characterised by the rath of the number
spatial direction by a factor oh. SinceY is a macroscopic  of pores generated at stagé¢o that number at stagel, and
qguantity and the electrode is macroscopically two-dimen-the reduction ratian of the side lengths of pores at consecu-
sional, Y scales in the following way tive stages. The fractal dimension of the carpet or gabBkget,

Y(m w) = m2Y(1, o) ) is given asDs=In(N)/In(m). The Sierpinski electrode is con-

, Where the first argument denotes system size. Next, sinc'|FlFIFREEEEEE

capacitance is proportional to area and the area changés, as H--H- -5 - y

the scaling law for the microscopi& element takes the form LI N LR R I ) 3

C(m) = m>PC (1) 8). g K . 3 b

Finally the elemenR, scales in the usual wa BEmm R ER 8~
y R y -H--"H- - ]

(9) [ I A TR TN BN R B R ] ;:l

R(m) = mR(1)

From the combination of Egs. (6), (8) and (9), we have

W ] LN A [ ]
. [ N | an
o - 5 1 -
2 THTaR(mCm) - R
. Dy -1 :
_ j(wm™ )Cy(1)
=my —5,71 (10). |
k1+j(cwm JR(1)C (1) Em mm Em mN
_— Em mm Em mN
=mY(L wm " ) am mm Em mm
| 0 R AN _ _EN
Substituting Eq. (10) into Eq. (7), we get (b) (c)
Dy-1 Fig. 4. Various Sierpinski electrodes with the fractal dimensios of
Y(1, wm ) =m (11) (a) 1.8928, (b) 1.2619, and (c) 1.5850. (a)-1 represents the horizontal
Y(1, w) ' cross section of electrode (a).
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Fig. 6. The configuration of the Sierpinski working electrode and

Fig. 5. The variation of phase angle with frequency at three different counter electrodes.

Sierpinski electrodes of Fig. 4. It was assumed that the side length of
the electrode is 1 cm, the resistivity of the electrolyte is 0.@cm,

and the double layer capacitance per unit area of the electrode/  account, the elementary impedargefor a single pore is
electrolyte interface is 1¢f Fem?2.

given by
structed by fitting eagh pore of cubic shape in its hquzontal - 2dp . %}ﬂ% cothD L H (15)
cross section, as depicted in Fig. 4(a)-1. The bottom interface aﬁ [Qaig [QD A O

of each pore is assumed to be capacitive (solid line in Fig.

4(a)-1) and the other sides insulating (dotted line in Fig. with A= (2&pwla)4(1+), anda, = a/n¥, wherep is the

4(a)-1). The counter electrode is assumed to be located jugesistivity of the electrolytef, the capacitance per unit area

in front of the Sierpinski electrode, which means that the of the electrode surface;, the side length of the pore at the

individual pores are independent, and their equivalent circuitkth-order;d, the distance between working and counter elec-

is a series RC circuit. trodes, and. represents the length of the Sierpinski elec-
Let the solution resistance and the double layer capacitrode. The first term of Eq. (15) is the resistance due to the

tance of the largest pore be denotedRgyand C,, respec-  solution outside the pore, and the second term is the imped-

tively. Then, the capacitance and resistance ofktherder ance due to the single pore in the working electtfde.

(or k-staged) pore equaly/m?® and Ry, respectively, and Now, the second term of Eq. (15) can be written @/ (

the number okth-order pores is\“. Thus, the total admit- 2ak2)coth(L/2/\k)=pL/12a§ + (4um L&) at sufficiently low

tance of the cell is given by frequencies. It is noted that the first term in the above equa-
tion represents a resistor with resistamté12a? and the
1 second term represents a capacitor with capacitaage.4
Y(w) = - S
k5o R, N+ (i wCOm—Zka)—l (14). Substituting the above equation into Eg. (15), we get
_ 2 J'Q’Com_Zka Lo, ., =]
P Ry Z,= a%%d + Tt (AiwaLé) (16).
When the frequency goes towards infinity, the admit- That is, in the low frequency limit the elementary imped-
tance become¥ = ¢;(j wCyRy)“, wherec; = T[RoIn(m)sin(am)] ance of the combination of a single pore and the solution
and a = In(N/m)/In(m) =Ds1. Thus this type of the Sierpin- outside the pore can be represented by a capacitor in series
ski electrode shows CPE behaviour with the exponerid.1. with a resistor.

The variation of phase angle with frequency is plotted at 3 Then, the total impedance is given by

different Sierpinski electrodes (Fig. 4(a)-(c)) in Fig. 5.
1

O, k=10
4.2. Sierpinski fractal electrode Il : Chu's modet*® Z(w) = (V)" = Dz N__H
Let us consider the cell configuration of Fig. 6. The work- %: 140
ing electrode is the Sierpinski carpet of the fractal dimension 2 a7)
Ds = InN/Inm in its cross section. Only the walls of the pores _n(N/m-1)" N 4 N/m-1
are assumed to be capacitive. If the solution resistance N-1 " (n/m)®" joc, (N/m)"

between working and counter electrodes is taken into
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Fig. 8. Cantor fractal model of a rough interface between an
electrolyte (black) and an electrode (white).
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Fig. 7. The variation of phase angle with frequency at three different
Sierpinski electrodes. It was assumed that=0.1 cm,d =0.1 cm, and
L=1cm.

, Wherer; andc; are defined ap(2d + L/12)/a;® and
48l a,, respectively, and the subscriptindicates the total
number of stages. From Eq. (17) we easily obtain the follow-
ing relation

2
Zy5 = H - 1(@) (18).

For extremely largen, the smallew expansion eventually
breaks down, but the relation in Eq. (18) remains ¥&lahd
approaches the dynamic scaling law

2
ZEH = A (19)

, Where Z¢) = limZ_ . Since the solution of Eq. (19) is

Z(w)oc w? at Suffifl:iéo;]tly low frequencies, we obtain Fig. 9. Equivalent circuit for the Cantor fractal model of Fig. 8.
a= 2—% = 2-Dg (20). branches at every stage. The scale faotmatisfiesm >N

and thusD, = InN/Inm<1. It is assumed that only the walls
Fig. 7 shows the variation of phase angle with frequency atof the grooves are capacitive.

3 different Sierpinski electrodes with the cross sections of The electrical properties of this structure can be analysed

Fig. 4(a)-(c), calculated on the basis of Eg. (15). The phaseéy constructing an electric circuit analogue of Fig. 9. Since

angles at the low frequencies are equal to be those predictetthe cross section area of the grooves is reduced by the ratio

by Eqg. (20). 1/m at every stage of branching, whereas the depth of the
grooves is invariant, the resistarReéncreases by the ratio
4.3. Cantor fractal electrode | :Liu’s modef® at every stage. The common ground is the electrode.

The cross section of the electrode used in this model is The impedance of the electric circuit of Fig. 9 has the
depicted in Fig. 8. The electrolyte and the electrode areform of an infinite continued fraction:
shown in black and white, respectively. The grooves in the

electrode are seen as protrusions on the electrolyte side. EachZ(w) = R+ 1 5

groove has the self-similar structure in that it subdivides into jawC + 1

two branches, and the branches are similar to the whole mR+ - P

groove when magnified by a factor Viewed from the elec- joc+ sz\H-—l (22)
trolyte side, the interface is regarded as the Cantdfpar jwC+ ...

whose fractal dimension B, =In2/Inm. The model can be
generalised tdN grooves, each of which subdivides it It can be readily verified forlRC < 1 that 4(w) = R+1/
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Fig. 10. The variation of phase angle with frequency at four I“
different Cantor electrodes. It was assumed that the side length of
the electrode is 1 cm. Fig. 11. Self-affine Cantor fractal model of a rough interface

between an electrolyte and an electrode.

joC, Z,(w) OR(1+2m/9)+1/3jwC, ..., where the sub-
script means the number of branching step. After a suffi-respectively, and in height byn,. N, is the number of new
ciently large number of branching steps® 1, and form> branches appearing at each stage of the structure created by

2, wRC < 1, the impedance can be written approximately as projecting the Cantor block on thez plane, and\,, on the
y-z plane.m,, m, and m, mean the reduction ratios in the
OR m(m+ 1) ond', 1 22) direction ofx, Y, and z, respectively. By geometryn, > N
n =" (m=-1)(m-2)(2m-1)20 M we ’ andm,> N, It is assumed that only the walls of the branches
are capacitive.
From Eq. (22) it is seen that The electric circuit analogue of this cell is constructed as
tree structure wittN,N, new branches appearing at each new
node. Each branch has a series resistor and a capacitor con-
nected to ground. The resistarRencreases bynm,/m, in
each successive stage, due to the reduction in cross-sectional
For largen, Eq. (18) approaches the dynamic scaling law area of the branch by ym, and the decrease in length by
1/m,. Similarly, the capacitanc€ is reduced by (ih+1/
my)1/m, since the interfacial areas of the walls onxreand
y-z planes are reduced bymm, and 1mm, respectively,
in successive stages. The electric circuit of the interface is
, where Z(w) = limZ . Since the solution of Eq. (24) is shown in Fig. 12, which circuit describes the special case of
Z(w) Dw™ at sufficiently low frequencies, we obtain m,=m,=m, m,= 1, andN, = N,= 2.
The input impedance of this circuit has the form of a fol-

4

ZyE5= 52, 1(w) (23).

zgeg = 92(w) (24)

q=1- In(2) _ 1-Dg (25). lowing infinite continued fraction
In(m) _
Z() =
Fig. 10 shows the variation of phase angle with frequency R+ 1N N
at variousm values, calculated on the basis of Eq. (21). The jwC+ — xY
i Lml/R+ 1
phase angles at the low frequencies are equal to be those m, Col_ 10 NN,
predicted by Eq. (25). 1om, " m1" T BzR+ 1
m, ooctr 10
. =0 + 0
4.4. Cantor fractal electrode Il:generalised Liu's mefﬂn§+ :
model>19)
Finally, we examine the self-affife?® fractal model. The 26).
Y,

cell configuration is shown in Fig. 11, which generalises the

model of Section 4.3. The electrolyte protrudes into the elec- The model can be solved for three different cases. In the
trode. At each successive stadkN, new branches appear first case, we lem,= m,=m, m,= 1, andN,= Ny= N. From
which are scaled in depth and width byml and Im,, Eq. (26), then we find
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L_c/m’

Fig. 12. Equivalent circuit for the self-affine Cantor fractal model of
Fig. 11. It was assumed thatn, = m,=m, m,=1 andNy = N, = 2.

mZZ(w)

jomCZ w) + N2
Under the assumption that @(— o and aZ(w) —0 as
w— 0, Eq. (27) becomes

z% = R+ 7).

2
ZEPT-_E = :;—22(0)) (28)

Since the solution of Eq. (28) is @< w” and the fractal

the surface a® = 2 + In(N\N,/m))/In(my), we find

_InNNymy)

a= In(my

(30).

Finally, consider the most general case:>m, and
m,>m, Treating the impedance Eq. (26) as in the first case,
we find

B 1_In(NXN /mm,)

= > (31).
In(m,/ m_)

In this case, the fractal dimension of the surface is calcu-
lated to beD =2 + In(N\Ny/mym,)/In(m,). Then, a is not
related to the fractal dimensidn

5. Concluding Remarks

The present article explained first the constant phase ele-
ment (CPE) in electrochemical impedance and second briefly
introduced the Nyikos and Pajkossy’s widtlon the charg-
ing /discharging of the fractal blocking electrode. Finally,
this article summarised various fractal models for analysing
the ac response of the rough electrodes. On the basis of the
fractal geometry, one can quantitatively estimate the fractal
dimension of the electrode surface using the electrochemical
impedance spectroscopy.

As a matter of fact, it is still a troublesome issue to relate
the determined fractal dimension with the surface roughness
of the electrode: Even on single crystalline surface, defects
of the crystal structure may cause local capacitive inhomoge-
neities, thus causing non-ideal capacitive behaviour. This is
especially true when real rough surfaces with lots of crystal
defects and dislocationstc. are considered. These surface
inhomogeneities cause additionally the time constant distri-
butions, and thus lower the phase angle of the impedance.
Under these complicated circumstances, the time constant
distributions may give more meaningful information than the
fractal dimension does, about the origin of the abnormal
electrochemical response of the electrode to ac sigifal.
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