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Abstract : This article is concerned with the application of the fractal geometry to interfacial electrochemistry. Espe-
cially, we dealt with diffusion kinetics at the fractal electrodes. This article first explained the basic concepts of the
fractal geometry which has proven to be fruitful for modelling rough and irregular surfaces. Finally this article exam-
ined the electrochemical responses to various signals under diffusion-limited reactions during diffusion towards the
fractal interfaces: The generalised forms, including the fractal dimension of the electrode surfaces, of Cottrell, Sand
and Randles-Sevcik equations were theoretically derived and explained in chronoamperomety, chronopotentiometry
and linear sweep/cyclic voltammetry, respectively.
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1. Introduction

The power law, e.g. Cottrell, Sand or Randles-Sevcik rela-
tion, of the electrochemical diffusion of an active species
from a bulk electrolyte towards an electrode surface was
introduced a long time ago under the assumption of geomet-
rically simple (e.g. planar, cylindrical or spherical) elec-
trode,1) and it has been frequently used to analyse transport
phenomena in the field of electrochemistry. However, the
geometrical assumption is not justified if the electrode sur-
face is irregular. Such cases occur frequently in practice,
because the actual solid electrode can be rough, porous, and
partially blocked, etc. That is, the conventional power laws
place a limitation to describe the electrochemical atomic/
ionic diffusion towards rough or irregular electrode, due to
the complicated and non-uniform current density distribution
on the electrode surface. 

Recently, following the Mandelbrot’s pioneering work2) on
the fractal geometry, much attention has been paid to the
modelling of the rough and irregular surfaces as fractal.3-7)

And many theoreticians have focussed on finding some cor-
relation between the modelled(assumed) fractal electrode
geometry and certain electrochemical quantity.8-20) These
efforts have been quite successful and thus the anomalous
diffusion behaviour in the rough electrode has been satisfac-

torily analysed on grounds of the fractal geometry.
This article reviewed the basic concepts of the fractal

geometry. In addition, we examined the electrochemical
responses to various signals under diffusion-limited reactions
during diffusion towards the fractal interfaces: We theoreti-
cally derived the generalised forms, including the fractal
dimension of the electrode surface, of Cottrell, Sand and
Randles-Sevcik equations. 

2. Fundamentals of Fractals

2.1. Concepts of fractals and fractal dimension
Mandelbrot defined a fractal to be any curve or surface

that is independent of scale.2) This property, referred to as
self-similarity, means that any portion of curve, if blown up
in scale, would appear identical to the whole curve. An
important difference between the fractal curves and the idea-
lised curves that are normally applied to natural processes is
that fractals are nowhere differentiable. That is, although they
are continuous, they are kinked everywhere. 

For example, let us imagine a straight line of length l, as
in Fig. 1(a). One then removes the middle third of the line,
and replaces with two lines that each has the same length (1/
3)l as the remaining lines on each side (Fig. 1(b)). Conse-
quently, the length of the curve becomes (4/3)l. The above
process specifies a rule that is used to generate a new form.
The rule says to take each line and replace it with four lines,
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the length of which becomes one-third of the original. Thus,
the second iteration according to the rule yields a more con-
voluted curve as shown in Fig. 1(c), which consists of 42

straight lines. The length of curve becomes (4/3)2l. And sub-
sequent third iteration gives the curve (Fig. 1(d)) with 43

lines of length (1/3)3l, thus with a total length (4/3)3l. Iterat-
ing this process n times leads to a curve with 4n lines of
length (1/3)nl, thus with a total length (4/3)nl. One does this
process without end, resulting in a mathematical “monstros-
ity” : A continuous curve of infinite length which is nowhere
differentiable. Moreover, if blown up in scale, any portion of
the curve appears identical to the whole curve, i.e. the curve
is self-similar.

Now let us consider the dimension of the von Koch curve.
So far we have used the term “dimension” in two senses :
The three dimension of Euclidean space, and the number of
variables in a dynamic system. More formally and generally,
we say a set is n-dimensional if we need n independent vari-
ables to describe a neighborhood of any point. If we take an
object with a measure (e.g. length, area or volume) of N
residing in Euclidean(or topological) dimension DE, and
reduce its linear size by 1/m in each spatial direction, it is
well known that its measure would increase to be N' = mDEN.
We will call this a simple magnification. Here, DE has the
values of one, two and three for line, plane and solids such
as cube, respectively. Fig. 2(b) shows the product of simple
magnification (m=3) of Fig. 2(a). The magnified curve can
not be the von Koch curve any more, because it loses already
the self-similarity.

The fractal character of the von Koch curve can survive
not through the simple magnification, but through the fractal
magnification (Fig. 2(c)). In the case of the fractal magnifi-
cation, the length of the three times magnified line becomes
always the four times of that length of the original line, so
that from the relation 4 = 3D1 we find the dimension D=(ln

4)/(ln 3) 1.2619. The dimension between 1 and 2 indicates
that the von Koch curve has properties intermediate between
those of one- and two-dimension objects. This fractional
dimension can not be explained by the conventional Euclid-
ean concept. One calls the fractional dimension of the fractal
objects the fractal or Hausdorff dimension DH. If the hori-
zontal cross section of the complete electrode is given as the
von Koch curve mentioned above, the fractal dimension of
this electrode becomes DH=1+(ln 4)/(ln 3) 2.2619.

2.2. Inner and outer cut-offs
Real objects obviously do not show the fractal behaviour

at length zero to infinity. For example, metal fractures are
only extremely crinkly (down to the limits of their micro-
structural size range), while fractals are infinitely crinkly.
Hence, it can not be said that every real objects are ideally
fractals. Nevertheless, real bodies and surfaces can be mod-
elled by fractals in a certain limited size of range bordered
by spatial cut-offs, i.e. inner cut-off λi and outer cut-off λo.

So far as the diffusion process is concerned, spatial cut-
offs (λi and λo), and the corresponding temporal break-times
(τi and τo) are connected by  (where, δ is the root
mean square displacement of the diffusion species, i.e. the
diffusion layer width, D

~
is the chemical diffusivity, and t

represents the time).21) Beyond the temporal break-time τi or
τo when the diffusion species hardly recognise the fractal
character of the surface, the electrochemical responses to var-
ious signals obey the conventional diffusion equations, while
between τi and τo, the corresponding equations are expressed
as their generalised forms including the fractal dimension of
the surface. Here, one has to keep in mind that at short times
( ) and long times ( ) the surface area stands for the
microscopic area Amicr and macroscopic area Amacr, respec-
tively.

3. Diffusion towards Fractal Surfaces

3.1. Potentiostatic technique; Chronoamperometry; Curent
transient method

Consider an inert metal with a fractal surface immersed
into an electrolyte containing a redox couple. We assume
that the diffusion of the oxidised species Ox and the reduced

 ≅

 ≅

δ 2D̃t≈

t τi« t τo»

Fig. 1. The first few stages in the construction of the von Koch curve.
One removes the middle third of a straight line (a), and replaces
with two lines that each has the same length as the remaining lines
on each side, resulting in (b). Application of this procedure to each of
the line segments leads to curve (c), and then to curve (d). This
process can be repeated ad infinitum.

Fig. 2. The simple magnification of the image (a) yields (b), while the
fractal magnification of the image (a) yields (c).
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species Red in the electrolyte is semi-infinite. For the sake of
simplicity we assume further the solution contains initially
(at t = 0) only the oxidised form and the bulk and surface
concentrations are identical, i.e. . The electrode is
held initially at a potential where no electrode reaction takes
place. The only reaction occurring when the potential is low-
ered, is the reversible reduction of the oxidised species Ox to
the reduced species Red by Ox + ze = Red.

Now, we are interested in the time dependence of the Fara-
daic current when a potential step is applied.10,14) Assume
that the effective DH prevails between the inner cutoff λi and
the outer cutoff λo. And then enlarge the interface by a factor
m as described in the preceding Section. In the simple mag-
nification (Fig. 2(b)), every point of the original system in
the bulk or at the interface can be mapped onto the enlarged
one as , where  is a position vector in a suitably
chosen coordinate system. And the concentration map

 holds provided that the time is
scaled appropriately. For this, the structure of the diffusion
equation and the boundary conditions require t'=m2t. The
total current is obtained from Fig. 2(b) as the flux multiplied
by the area. Since the flux is proportional to the concentra-
tion gradient at the surface, it scales m-1. And the area is pro-
portional to m2. Then we obtain the conventional following
scaling law for the current

(1)

, where the first argument refers to system size.
In the fractal magnification (Fig. 2(c)), as long as the root

mean square displacement of the diffusing particles is
smaller compared with the outer cutoff λo, local properties
dominate and the large scale structure has very little effect
on the diffusion current. Therefore, since for Fig. 2(c) area
scales as mDH, we obtain

(2).

Now in case that the root mean square displacement of the
diffusing particles is larger than λi where the effect of the
smallest irregularities disappears, we have the approximate
equality . Consequently, from the
combination of Eqs. (1) and (2), we get

(3)

, which has the following solution

 (4)

, where σ means the Cottrell coefficient. The power-law
behaviour represented by Eq. (4) is valid both between the
temporal cutoffs τi and τo corresponding to the spatial cutoffs
λi and λo (see Section 2.2), and outside the temporal cutoffs.

Let us consider the Cottrell coefficient σ. Outside the cut-
offs, the conventional Cottrell equation  holds
where σc has the form1)

(5).

In Eq. (5) the area A has to be specified. As explained in

Section 2.2, the diffusing species sees the microscopic area
Amicr for  and the macroscopic area Amacr for . Paj-
kossy and Nyikos defined the temporal cutoffs τi and τo as

 and , respectively.14) Here, γ means a
dimensionless geometrical factor. We can now find the gen-
eralised Cottrell coefficient σg for the diffusion towards the
fractal surfaces. For obvious continuity reason we can give
the following equations at the temporal cutoffs.

(6)

(7)

Thus, from Eqs. (6) and (7), we get the generalised Cot-
trell coefficient σg :

   (8).

Since either Amacr and λo, or Amicr and λi can be measured
for a given surface, and the reasonable value of γ is known
to be 1/π,14) we can quantitatively analyse diffusion towards
the fractal interfaces during the potential step experiment
using the following generalised Cottrell equation

(9).

Another important mathematical works on the problem of
diffusion towards the fractal interfaces have been performed
recently with the help of fractional calculus.18) Those works
have proposed the following generalised diffusion equation
involving a fractional derivative operator.

(10)

, where  is the fractional diffusivity defined as K(4−2DH)

 (K is a constant related to the fractal
dimension and Ro is the side length of a square electrode),
and  means the Riemann-Liouville mathematical
operator of fractional derivative :

(11).

During the potential step experiment, the initial condition
(I.C.) and the boundary condition (B.C.) are given as

I.C. :  for 0ú x(ó at t = 0 (12)

B.C. :  for xçó    (semi-infinite constraint)
   at tû 0 (13)

        c = 0   for x = 0    (potentiostatic constraint)
 at t*0 (14).

Using the Laplace transforms of Eqs. (10), (12)-(14), then
we get
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(15)

, where s is the Laplace variable.
To compute the time dependence of the current density, we

make use of the following relation

(16).

From the combination of the Laplace transform of Eq. (16)
and the derivative of Eq. (15) at x=0, we get

(17).

Finally the inverse Laplace transform of Eq. (17) yields

(18)

, which is a generalised Cottrell equation. The Cottrell equa-
tion for planar diffusion is retrieved for DH = 2.

3.2. Galvanostatic technique; Chronopotentiometry; Poten-
tial transient method

Consider that a constant current density i is applied at the
electrode/electrolyte interface. Then, the diffusing species
begins to be depleted at the interface. At a certain character-
istic time τ, called the transition time, the concentration
drops to zero at the interface. The relation between the tran-
sition time and the fractal dimension of the electrode surface
has been explored also using fractional calculus. The I.C. of
Eq. (12) and B.C. of Eq. (13) are still valid in this case,
whereas the B.C. of Eq. (14) is replaced with the following
galvanostatic boundary condition at the electrode/electrolyte
interface

B.C. : for x = 0 (galvanostatic constraint)
at t*0 (19).

Using the Laplace transform of Eqs. (10),(12),(13) and
(19), the following equation is given18)

(20).

The inverse Laplace transform of Eq. (20) yields

   

(21).

At the transition time τ, the concentration of the oxidised
species Ox drops to zero at the electrode/electrolyte interface
x=0. So the generalised Sand equation is obtained from Eq.
(21).

(22)

The Sand equation for planar diffusion is retrieved for
DH = 2.

3.3. Linear sweep/cyclic voltammetry
We consider again the redox reaction Ox + ze = Red with a

solution initially containing only the oxidised form Ox. The
electrode held initially at a potential Ei where no electrode
reaction takes place. For the sake of simplicity, it is assumed
that the diffusion coefficients of species Ox and Red are
equal, i.e. . Now, the potential is linearly
increased or decreased with E(t)=Ei ± vt (v is a potential scan
rate, and signs “+” and “−” represent anodic scan and
cathodic scan, respectively). Under the assumption that the
redox couple is reversible, the surface concentrations 
and  of Ox and Red, respectively, are always determined
by the electrode potential through the Nernst equation

(23)

, where E1/2 means the half-wave potential, i.e. the potential
bisecting the distance between anodic and cathodic peaks in
a cyclic voltammogram.

The relationship between the difference in surface and bulk
concentrations and current is known to be15,22)

(24).

This may be recognised as a convolution integral which,
when Laplace transformed, gives the following relation

(25)

, where
_
fox is the transfer function for the process of the oxi-

dised species Ox.22) 
_
fox can be calculated from the potential

step experiment : Assuming an extremely fast kinetics at the
electrode surface, ∆cox is a step function during the potential
step experiment, and thus the Laplace transform  is
given as . And since iox(t) is given by 
(see Section 3.1), we get

_
fox as

(26).

Then, substituting Eq. (26) into Eq. (25) and using the
inverse Laplace transform, we get19,20)

(27).

Extending the derivation for a perfect smooth two dimen-
sional surface,1) we finally obtain the following functional
expression for the diffusion-limited current on the fractal
interface during cyclic voltammetry.
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   (28)

, where σt = (zF/RT)vt = (zF/RT)(Ei − E). χ is a dimensionless
parameter defined as

(29)

, where θ = exp[(zF/RT)(Ei − E1/2)] and S(t) = exp(−σt). Now
at any given value of S(σt), which is a function of E, χ(σt)
can be obtained by numerical solution of Eq. (29), and thus
the current is available by Eq. (28).

It is interesting to note that the conventional Randles-
Sevcik equation, relating the peak current ipeak to the poten-
tial scan rate v1/2, does not hold for the fractal electrode case.
Instead it is replaced with the following generalised Randles-
Sevcik equation, relating ipeak to the scan rate v(DH-1)/2.

    (30)

The Randles-Sevcik equation for planar diffusion is
retrieved for DH=2. 

4. Concluding Remarks

The present article presented first the basic concepts of the 
fractal geometry and then theoretically derived the genera-
lised forms, including the fractal dimension of the electrode
surface, of Cottrell, Sand and Randles-Sevcik equations. The
usual 0.5 exponent in conventional Cottrell, Sand and Ran-
dles-Sevcik equations is replaced with (DH − 1)/2 exponent in
the case of the fractal electrode of dimension DH.

Consequently, the fractal geometry provides an efficient
tool to treat problems arising from the irregular geometries
of the electrode: The geometrical irregularities can be mod-
elled on the basis of fractals, and then one can describe the
abnormal electrochemical behaviour of geometrically irregu-
lar electrodes in chronoamperometry, chronopotentiometry
and linear sweep/cyclic voltammetry, by considering the dif-
fusion towards the fractal interfaces, especially by using the
generalised equations described above. 
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