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Abstract. The present article is concerned with the application of the kinetic Monte Carlo simulation to electro-
chemistry of lithium intercalation from the kinetic view point. Basic concepts of the kinetic Monte Carlo method
and the transition state theory were first introduced, and then the simulation procedures were explained to evaluate
diffusion process. Finally the kinetic Monte Carlo method based upon the transition state theory was employed under
the cell-impedance-controlled constraint to analyse the current transient and the linear sweep voltammogram for the
LiMn2O4 electrode, one of the intercalation compounds. From the results, it was found that the kinetic Monte Carlo
method is much relevant to investigate kinetics of the lithium intercalation in the field of electrochemistry.
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1. Introduction

With the advent of fast computers, the Monte Carlo simu-
lation has become the popular method to analyse the thermo-
dynamic properties of a system at an equilibrium state.
However, the classical Monte Carlo method is not well suited
to explain the behaviour of the system over time. Instead, the
kinetic Monte Carlo method (KMC), so-called dynamic
Monte Carlo method has been employed to investigate non-
equilibrium or relaxation process of a number of such inter-
esting physical phenomena as chemical reaction,1-3) adsorp-
tion or deposition,4) and diffusion of adsorbates5-8) on surface
of solids. In the kinetic Monte Carlo method, the behaviour
of the systems over time can be explained in terms of the
rates of those reactions.

In the kinetic Monte Carlo method, the thermally activated,
stochastic hopping process is well described according to the
transition state theory (TST).5-9) Recently, the kinetic Monte
Carlo method based upon the lattice gas model has been
employed in the field of electrochemistry to analyse diffusion
of ions on the electrode surface or in the bulk electrode,
especially diffusion of lithium ions intercalated into transition
metal oxides.9,10) In those works, the kinetic properties such
as the chemical and component diffusion coefficients of lith-
ium ions in the transition metal oxides have been success-

fully investigated by using the kinetic Monte Carlo methods
with the transition state theory. Since the lithium intercala-
tion consists of multiple thermally activated processes such
as migration or diffusion of lithium ions in the electrolyte,
interfacial reaction at the electrode surface, and diffusion of
lithium ions in the bulk electrode, the kinetic Monte Carlo
study gives a better understanding of kinetics of the lithium
intercalation.

This article reviewed the kinetic Monte Carlo method
based upon the transition state theory to analyse electro-
chemical lithium intercalation from the kinetic view point.
First this article introduced fundamentals of the kinetic
Monte Carlo method and the transition state theory, and then
explained the Monte Carlo procedures to evaluate diffusion
process. Finally, the kinetic Monte Carlo method with appro-
priate algorithms was proposed to analyse the current
responses during the potential step and scan. In this article,
we presented the results theoretically calculated for the
LiMn 2O4 electrode, one of the well-known intercalation com-
pounds.

2. Fundamentals of Kinetic Monte Carlo Method

2.1. Kinetic Monte Carlo method
The kinetic Monte Carlo method is well suited to study

kinetics of the system near equilibrium as well as far from
equilibrium. In the kinetic Monte Carlo method, a configura-
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tion of the system is generated by a stochastic process using
a transition probability which satisfies a mass balance
condition11)

   (1)

where {c} and {c'} are a sequence of the configurations of
the system generated one after the other from the previous
configuration of the system, corresponding to a set of the
local occupation number of sites, i.e. {c} = { c1, c2 …, ci ...};
Wtr({ c} → {c'}) and Wtr ({ c'} → {c}), the transition probabili-
ties from the configuration of the system {c} to { c'} and
{c'} to { c}, respectively, and P({ c}, t) and P({ c'}, t) repre-
sent the probabilities that the configurations of the system
{ c} and {c'}, respectively, occur at t Monte Carlo step
(MCS) time.

The master equation that describes how the configuration
of the system {c} evolves with time is expressed as11,12)

   

(2)

Since the change in the configuration of the system involves
a number of trial jumps of atoms or ions from one site to the
empty nearest neighbor sites, it is then convenient to introduce
the flux of atoms or ions per unit jump length,

   (3)

where J({ c}, t) is total flux of atoms or ions per unit jump
length in the lattice with the configuration of the system {c}
at t MCS time. Eq. (3) is nothing but the discrete expression
of the Fick’s diffusion equation.

2.2. Transition state theory
In Eqs. (1) and (2), the transition probability Wtr is deter-

mined based upon the transition state theory. The transition
state theory or the activated complex theory is a classical
model of the thermally activated processes on a microscopic
scale in which atoms or ions jump over an energy barrier
larger than kBT.13) In the theory, the rates of the thermally
activated processes are equal to the number of activated com-
plexes passing over the energy barrier per unit time. There-
fore, Wtr is interpreted as a microscopic analog of the rate
constant k,

(4)

where w0 is the effective jump frequency of atoms or ions;
Ea, the activation energy; kB, the Boltzmann’s constant, and T
represents the absolute temperature.

The activation energy Ea in Eq. (4) of the thermally acti-
vated process is determined based upon the lattice gas
model. In the lattice gas model, the total energy of the lattice
H in the presence of a chemical potential µ is simply written
as

(5)

where ci is the occupation number of the site i: if the site i
is occupied by an atom or ion, ci = 1; otherwise, ci = 0. A
particular configuration of the lattice is specified by the set
of variables {c1, c2 …, ci, cj …, cN} for all the sites of the
lattice. In Eq. (5), the first summation corresponds to the
interaction energy Eint, where the positive value of J means
the repulsive interaction between atoms or ions, while the
negative value of J indicates the attractive interaction.

Let us first consider the transition state theory generally
used for diffusion process on the surface of solids. In the
case of the surface diffusion of adsorbates, µ is constant
within the whole electrode during diffusion process. In this
case, Uebing et al.5-8) proposed that the potential energy of
the transition state is invariant with concentration of adsor-
bates, and hence the activation energy for diffusion is simply
given by

(6)

where Etran and Eini are the potential energy of the transition
and the initial states, respectively; Ea

0, the activation energy
in case there is no interactions between atoms or ions, and
∆Eint represents the interaction energy change. In Eq. (6),
∆Eint > 0 for the repulsive interaction which decreases the
activation energy, while ∆Eint < 0 for the attractive interaction
which increases the activation energy. It should be noted that
the activation energy Ea increases or decreases by the amount
of the interaction energy change ∆Eint in Eq. (6).

On the other hand, in the case of the interfacial reaction on
the electrode surface,3,4) the activation energy change consists
of the chemical potential change ∆µ as well as the interac-
tion energy change ∆Eint. In this case, the activation energy
Ea increases or decreases by the amount of the change of

Wtr c{ } c′{ }→( )P c{ } t,( ) �Wtr c′{ } c{ }→( )P c′{ } t,( )

∂P c{ } t,( )
∂t

-------------------------- � W[ tr c′{ } c{ }→( )P c′{ } t,( )∑
W– tr c{ } c′{ }→( )P c{ } t,( ) ]

∂P c{ } t,( )
∂t

-------------------------- j c{ } t,( ) J c{ } t,( )–=∑–=

Wtr w0exp Ea– kBT⁄( ) k= =

H J cicj
i j
∑ µ ci

i 1=

N

∑–=

Ea Etran Eini– Ea
0 Eint∆–= =

Fig. 1. Schematic diagram of the potential energy curve across the
electrolyte/electrode interface for the jumps of atoms or ions from
the electrolyte side to the electrode surface side or vice versa. Solid
line represents the potential energy curve at open circuit potential
(OCP), ααanod = x1/(x1 + x2); ααcath = x2/(x1 + x2).
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ensemble energy as Hamiltonian ∆H multiplied by the sym-
metry factor α. Fig. 1 shows the schematic diagram of the
potential energy curve across the electrolyte/electrode inter-
face for the jumps of atoms or ions from the electrolyte side
to the electrode surface side or vice versa in consideration of
only the short-range interactions between atoms or ions on
the electrode surface.

According to the model, the activation energy Ea during
the anodic polarisation is expressed as,13,14)

      for the anodic reaction (7)

for the cathodic reaction (8)

where αanod is the symmetry factor for the anodic reaction,
i.e. for the jumps of atoms or ions from the electrode side to
the electrolyte side, (1-αanod) = αcath. By contrast, the activa-
tion energy Ea during the cathodic polarisation is given by,

for the anodic reaction (9)

for the cathodic reaction (10)

where αcath is the symmetry factor for the cathodic reaction,
i.e. for the jumps of atoms or ions from the electrolyte side
to the electrode side, (1-αcath) = αanod.

2.3. Kinetic Monte Carlo procedure for diffusion process
The essential basis in statistical mechanics for the theoret-

ical study on kinetics of diffusion process is the random walk
approach. The random walk simulation for diffusion process
is performed in the canonical ensemble (CE) where all the
microstates have the same volume V, the same temperature T
and the same number of atoms or ions N with each other.

The kinetic Monte Carlo procedures for diffusion process
with the spin-exchange dynamics15) are described as follows:
(i) Establish an initial configuration of the system,
(ii) Select one atom or ion in the system at random,
(iii) Make a random trial jump of the atom or ion to one of
its nearest neighbour sites,
(iv) If the nearest neighbour site is occupied, the trial jump
of the atom or ion is rejected,
(v) If the nearest neighbour site is empty, Wtr is calculated
from Eqs. (4) and (6),
(vi) If Wtr is greater in value than a random number generated
between 0 and 1, the trial jump is accepted; otherwise, the
trial jump is rejected, and then repeat the steps (ii) through
(vi) under the periodic boundary condition.11,15) Monitoring
the position of each atom or ion in the system jumping
across the periodic boundary by recording the direction and
the frequency of the encounter between either atom or ion
and the periodic boundary to effectively circumvent the limi-
tation of the finite size.11,15)

If the jump direction of atoms or ions randomly diffusing
through the system is independent of the previous jump
direction, the component diffusivity DK is simply obtained
from the mean square displacement of atoms or ions,

(11)

where d is the dimension of the system; <∆r2>, the mean
square displacement per atom or ion at t MCS, and ∆r i

2 rep-
resents the square displacement of atom or ion i at t MCS.
Here, DK is a measure of the random motion of atoms or
ions, and is thus simply proportional to the mobility of the
species in question. This diffusion coefficient obeys the
Nernst-Einstein equation regardless of whether the system is
ideal or non-ideal solution.

The chemical diffusivity  is expressed as the combina-
tion of the thermodynamic enhancement factor W and the
component diffusivity DK in the Kubo-Green formula,15,16)

(12)

which is the well-known Darken equation. In Eq. (12), W is
obtained from the fluctuation of N at constant V and T in the
grandcanonical ensemble (GCE),

(13)

   (14)

where δ is the concentration of atoms or ions; <N> and
<N2>, the mean values of N and N2, respectively, and Var(N)
represents the variance of N.

3. Electrochemical Reaction Kinetics by Kinetic 
Monte Carlo Method

In the field of electrochemistry, the current response mea-
sured during the potential step (i.e. potentiostatic current
transient technique or chronoamperometry) or during the
potential scan (i.e. cyclic voltammetry or linear sweep volta-
mmetry) has been analysed to understand kinetics of the
electrochemical reactions. In this section, we introduce the
kinetic Monte Carlo procedures to calculate the current
responses during both potential step and scan under the
assumption that the charge-transfer reaction occurs so rapid
that diffusion process is the rate-controlling step of the elec-
trochemical reactions. Let us consider an intercalation elec-
trode with planar symmetry immersed into an electrolyte
containing alkali ions that can be intercalated into the elec-
trode without interactions, i.e. a Langmuir gas. In addition,
assume that the charge-transfer reaction occurs at the elec-
trode surface, and the intercalated alkali ions diffuse through
the electrode and then accumulate at the end of the electrode
as an impermeable boundary.

3.1. Potentiostatic current transient by kinetic Monte
Carlo method

In the case of the pontetiostatic current transient technique,
the current response is measured with time after an abrupt
potential jump or drop from an initial electrode potential to an
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applied constant potential. Under the diffusion-controlled con-
straint, the concentration of ions at the electrode surface is
maintained constant as the concentration corresponding to the
applied potential during the potential jump or drop, which is
determined from the relationship between the electrode poten-
tial and the concentration of ions (see the inset in Fig. 2).

In the kinetic Monte Carlo procedure, the above boundary
condition (B.C.) at the electrode surface is written as

, for t > 0 (15)

where δs is the surface concentration of ions, and x represents
the distance from the surface to the end of the electrode. On
the other hand, the impermeable B.C. at the end of the elec-
trode is given by

, for t > 0 (16)

where L is the thickness of the electrode.
By using Eqs. (2), (3), (4) with Eqs. (6), (15) and (16), the

flux of ions at the electrode surface and those fluxes at any
of the inside electrode can be calculated as a function of
MCS time. Here, the plot of the flux of ions at the electrode
surface against MCS time corresponds to the current tran-
sient. The flux of ions and the MCS time were reduced by
the total number of sites on the electrode surface side and the
square of the total number of sites in the thickness direction
being perpendicular to the electrode surface, respectively.

Fig. 2 gives on a logarithmic scale the anodic current tran-
sient theoretically calculated under the diffusion-controlled
constraint by jumping the initial electrode potential -0.2 V to
the anodic potential 0.2 V. The current transient theoretically

calculated exhibited a linear relationship between logarithmic
flux and logarithmic time with a slope of -0.5, followed by an
exponential decay. The transition time tT indicated by open
circle means the time at which the current transient shows a
transition from the semi-infinite diffusion process (i.e. the
Cottrell behaviour) to the finite-length diffusion process.17,18)

3.2. Linear sweep voltammogram by kinetic Monte
Carlo method

In the case of the linear sweep voltammetry, the current
response is obtained by scanning the applied potential from
an initial electrode potential to a final potential at a scan rate
v. Under the diffusion-controlled constraint, the variation in
the surface concentration of ions with time follows the
change in the concentration of ions with the quotient of the

P c{ } t,( ) x 0= δs=

∂P c{ } t,( )
∂t

--------------------------
x L=

J c{ } t,( ) x L=– 0= =

Fig. 2. Anodic current transient theoretically calculated under the
diffusion-controlled constraint by jumping the initial electrode
potential −0.2 V to the anodic potential 0.2 V. The relationship
between the electrode potential and the concentration of ions is
presented as the inset in figure.

Fig. 3. (a) Linear sweep voltammogram theoretically calculated
under the diffusion-controlled constraint by scanning the applied
potential from −0.2 to 0.3 V with the scan rate of v = 1 × 10-3, and
(b) the reduced peak flux Jp theoretically calculated at various scan
rates v.
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applied potential divided by the potential scan rate, according
to the relationship between the electrode potential and the
concentration of ions (see the inset in Fig. 2).

According to the Nernst equation,13) the above B.C. at the
electrode surface in the kinetic Monte Carlo procedure is
written as,

, for t > 0   (17)

where z is the charge valence; F, the Faraday constant; R, the
gas constant; Ei , the initial electrode potential, and v repre-
sents the scan rate given by (dE/dt). In Eq. (17), v has a pos-
itive value for the anodic scan, while v has a negative value
for the cathodic scan. By using Eqs. (2), (3) and (4) with
Eqs. (6), (16) and (17), the flux of ions at the electrode sur-
face and those fluxes at any of the inside electrode can be
calculated as a function of MCS time. Here, the plot of the
flux of ions at the electrode surface against the applied
potential corresponds to the linear sweep voltammogram.

Fig. 3(a) depicts the linear sweep voltammogram theoreti-
cally calculated under the diffusion-controlled constraint by
scanning the applied potential from -0.2 to 0.3 V with the
scan rate of v = 1 × 10-3. The linear sweep voltammogram
theoretically calculated showed one reduced peak flux Jp at
the peak potential Ep. The reduced peak flux Jp was calcu-
lated at various scan rates as given in Fig. 3(b).

In Fig. 3(b), log Jp was clearly proportional to log v with
a slope of 0.5 at the high scan rates (i.e. Randles-Sevcik rela-
tion) and with a slope of 1.0 at the low scan rates, as well-
established for the diffusion-controlled transport of atoms or
ions under the impermeable boundary condition on one side
of the electrode. The former proportionality on a logarithmic
scale is attributed to the semi-infinite diffusion process,
whereas the latter proportionality does to the finite-length
diffusion process.19)

4. Application of kinetic Monte Carlo Method to 
Electrochemical Lithium Intercalation into 

LiMn 2O4

4.1. Component and chemical diffusivity of lithium ions
In this section, we apply the kinetic Monte Carlo method

to investigate kinetics of the electrochemical lithium interca-
lation into the LiMn2O4 electrode involving the disorder to
order phase transition,9,10) one of the well-known intercala-
tion compounds. For the kinetic Monte Carlo simulation, we
employed the two sub-lattice model of the LiMn2O4 elec-
trode well-established in the previous works.9,10,20)

In consideration of the first- and second-nearest interac-
tions between lithium ions in the LiMn2O4 electrode, Hamil-
tonian H of the lattice is defined as9,10)

(18)

where J1 and J2 are the effective pairwise interaction param-
eters for the first- and second-nearest neighbouring lithium

ions, respectively; ε , the effective binding energy between
lithium ion and manganese oxide matrix; µ , the chemical
potential of lithium ion; ci, the local occupation number of
the site i, and cj and ck represent the local occupation num-
bers of the first- and second-nearest neighbour sites, respec-
tively: ci, cj or ck = 1 if the site is occupied by lithium ion,
and ci , cj or ck = 0 otherwise. In this article, the values of the
effective interaction parameters were similarly taken as
J1 = 37.5 meV, J2 = −4.0 meV and ε = 4.12 eV which
allowed us to successfully approximate the thermodynamic
properties of the LiMn2O4 electrode.9,10,20)

Fig. 4 presents on a logarithmic scale the component diffu-
sivity DK and the chemical diffusivity  of lithium ions
along with the thermodynamic enhancement factor W, theo-
retically calculated as a function of lithium content (1 -δ ) in
Li 1−δ Mn2O4 at T = 298 K from Eqs. (11), (12), (13) and (14).
In order to analyse the dependence of  on (1 -δ ), we com-
pared the contribution of DK to  with that contribution of
W. Below the transition point (1 -δ )tr1 at which the transition
of the disordered lithium-poor phase to the ordered phase
occurs,10) DK decreased exponentially with (1 -δ ) while W
increased linearly. Therefore, , which is mainly governed in
value by DK below (1 -δ )tr1, decreased with (1 -δ ) due to the
decrease of the available vacant sites for diffusion.

Above the transition point (1 -δ)tr2 at which the transition
of the ordered phase to the lithium-rich phase occurs,10) 
increased with (1 -δ), indicating that  is predominantly
controlled in value by W owing to the suppressed fluctuation
in N. On the other hand, in the ordered phase region between
(1 -δ)tr1 and (1 -δ)tr2,  held nearly constant value due to the
counterbalancing effects of DK and W. In our recent work,10)

the results theoretically calculated were compared with those

P c{ } t,( ) x 0= = δs t( ) = zF
RT
------- Ei vt+( )exp

H J1 cicj
i j
∑ J2 cick

ik
∑ ε µ+( ) ci

i
∑–+=

D̃

D̃
D̃

D̃

D̃
D̃

D̃

Fig. 4. Plots of the component diffusivity DK and the chemical
diffusivity  along with the thermodynamic enhancement factor W,
theoretically calculated as a function of lithium content (1− δδ) in
the Li1−δMn2O4 electrode at T = 298 K. (1− δδ)tr1 means the transition
point of the disordered lithium-poor phase to the ordered phase,
and (1− δδ)tr2 represents the transition point of the ordered phase to
the disordered lithium-rich phase.10)

D̃
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results experimentally measured, and then the effects of such
structural defects as the excess lithium ions and oxygen
vacancies on , DK and W were also discussed.

4.2. Potentiostatic current transient and linear sweep
voltammogram

Recently, in our works21-26) on lithium transport through
the transition metal oxides, it was found that the potentio-
static current transient and the cyclic voltammogram experi-
mentally measured never follow the diffusion-controlled
behaviours, i.e. the Cottrell equation and the Randles-Sevcik
equation, respectively. From the numerical analyses of the
current transient and the cyclic voltammogram, it was sug-
gested that lithium transport through the oxides is controlled
by the cell-impedance rather than diffusion of lithium ions in
the oxides. In those works, the cell-impedance means the
total internal cell resistance, major sources of which may be
the bulk electrolyte, the electrolyte/electrode interface, and
the bulk electrode.

According to the cell-impedance-controlled model, the cur-
rent I is crucially determined by the quotient of the potential
difference ∆E between the equilibrium electrode potential Eeq

and the applied potential Eapp divided by the cell-impedance
Rcell,

21-26)

(19)

In the kinetic Monte Carlo procedure, therefore, the flux of
lithium ions at the electrolyte/electrode interface is calculated
as a function of MCS time by using Wtr given as,

(20)

where f is the proportionality (conversion) factor, and |Eapp-Eeq|
represents the potential difference ∆E between Eeq and Eapp

in absolute value. In Eq. (20), Wtr is again proportional to the
quotient of ∆E in absolute value divided by Rcell as follows,

   (21)

This means that the conversion factor f is inversely propor-
tional to Rcell.

Fig. 5 gives on a logarithmic scale the anodic current tran-
sients, theoretically calculated by the kinetic Monte Carlo
method under the cell-impedance-controlled constraint with the
conversion factors f = 0.1 and 0.2 by jumping the electrode
potential 3.90 VLi/Li+  to the applied potential 4.30 VLi/Li+ . The
current transient theoretically calculated ran with the slope
of logarithmic reduced flux with logarithmic time flatter than
-0.5 in the early stage, and then did in the upward concave
shape in the time interval between the first inflection point
tT1 and the second inflection point tT2, finally followed by an
exponential decay. The reduced flux J in the early stage
increased, and tT1 and tT2 were shortened with increasing f
(i.e. decreasing Rcell). The current transient theoretically cal-
culated under the cell-impedance-controlled constraint well
coincided in shape with the result experimentally mea-

sured.25,26)

Fig. 6(a) demonstrates the linear sweep voltammogram,
theoretically calculated by the kinetic Monte Carlo method
under the cell-impedance-controlled constraint with f = 0.2
by scanning the applied potential from 3.80 to 4.50 VLi/Li+

with the scan rate of v = 1Ý10-3. The linear sweep voltam-
mogram theoretically calculated exhibited two reduced peak
fluxes Jp1 and Jp2 at the peak potentials Ep1 and Ep2, respectively.
The linear sweep voltammogram theoretically calculated was
well consistent in shape with the result experimentally mea-
sured.26) The reduced peak fluxes Jp1 and Jp2 which were
determined from the linear sweep voltammograms calculated
at various scan rates v and conversion factors f are shown in
Fig. 6(b).

In Fig. 6(b), the dependence of logarithmic reduced peak
fluxes on logarithmic scan rates did not follow the Randles-
Sevcik relation at the high scan rates. The first reduced peak
flux Jp1 and the second reduced peak flux Jp2, calculated
under the cell-impedance-controlled constraint with f = 0.1,
were linearly proportional to v to the power of 0.54 (Jp1 ∝
v0.54) and 0.58 (Jp2 ∝ v0.58) at the high scan rates. The slopes
of log Jp1 and log Jp2 vs. log v plots calculated with f = 0.2
were determined to be 0.57 (Jp1 ∝ v0.57) and 0.61 (Jp2 ∝ v0.61),
respectively, indicating that those slopes became steeper with
increasing f (i.e. decreasing Rcell). The dependence of the
peak flux on the scan rate theoretically calculated by the
kinetic Monte Carlo method under the cell-impedance-con-
trolled constraint well coincided with the results experimentally
measured,26) indicating that lithium transport through the
LiMn2O4 electrode is not underlain by the diffusion-controlled
constraint but by the cell-impedance-controlled constraint.

From the results theoretically calculated in the case of the
LiMn 2O4 electrode, one can readily find that the kinetic

D̃

I Eapp Eeq–( ) Rcell⁄ E∆ Rcell⁄= =

Wtr f Eapp Eeq– f E∆= =

Wtr
E∆

Rcell
-----------∝

Fig. 5. Anodic current transients theoretically calculated under the
cell-impedance-controlled constraint with the conversion factors f =
0.1 and 0.2 by jumping the electrode potential 3.90 VLi/Li+  to the
applied potential 4.30 VLi/Li+ .
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Monte Carlo method based upon the transition state theory is
much relevant to theoretically investigate kinetics of the lith-
ium intercalation in the field of electrochemistry.

5. Conclusions

The present article first reviewed the fundamentals of the
kinetic Monte Carlo methods and the transition state theory,
and then applied the kinetic Monte Carlo methods based
upon the transition state theory to evaluate diffusion kinetics.
The kinetic Monte Carlo methods were employed to analyse
the current responses during the potential step and scan

under the simple diffusion-controlled constraint. In addition,
the kinetic Monte Carlo simulation was executed to analyse
the current transient and the linear sweep voltammogram of
the LiMn2O4 electrode, one of the intercalation compounds,
under the cell-impedance-controlled constraint. From the
results theoretically calculated, it was confirmed that the
kinetic Monte Carlo method based upon the transition state
theory with appropriate boundary conditions is strongly
applicable to analyse kinetics of the electrochemical lithium
intercalation.
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Fig. 6. (a) Linear sweep voltammogram theoretically calculated
under the cell-impedance-controlled constraint with f = 0.2 by
scanning the applied potential from 3.80 to 4.50 VLi/Li+  with the scan
rate of v = 1 × 10-3, and (b) the reduced peak fluxes Jp1 and Jp2

theoretically calculated at various scan rates v and conversion
factors f.


